

Protocon Network Document

Hello! This is the document for Protocon Network.

Protocon Network

Protocon is a blockchain project that aims to build a self-operating digital economy based on protocols.

ISAAC+, Protocon’s core consensus protocol, is designed for large-scale data processing for use in the industry, and has secured versatility so that it can be used in any area that requires blockchain technology. Based on this, we will promote a protocol-based pure digital economy.

For more information about Protocon, visit Protocon [https://protocon.io/].

Contents

Protocon Blockchain

	Mitum Protocol

	Seal and Operation

	Block Data

Blockchain Application Model

	Blockchain Application Model

	Mitum Currency

	Mitum Currency Extension

	Mitum Document

	Mitum Feefi

	Mitum NFT

Quick Start

	Quick Start

	Configuration

	Run

	Node Handover

CLI

	Command Line Interface

	Key Generation

	Node Management

	Operation Execution

	Operation Generation

	Lookup Account

REST API

	REST API

	Using Operation Builder

	API List

SDK

	Javascript

	Python

	Java

Appendix

	About Time Stamp

Mitum Protocol

What is MITUM?

Mitum is a general privacy blockchain that is flexible and resilient.

Mitum can be used for various kind of purposes.

	public and private blockchain like cryptocurrency network

	data-centric blockchain for arbitrary data

	secure anonymity voting system

If you want to know more about MITUM, visit Mitum Doc [https://mitum-doc.readthedocs.io/en/proto2/index.html].

Mitum Technical SPEC

	Mitum (blockchain core framework) uses ISAAC+ consensus protocol based on PBFT.

	The network transport protocol is quic [https://en.wikipedia.org/wiki/QUIC] (based on udp).

	Gossip-Based Node Discovery Protocol.

	The main storage engine of the blockchain uses MongoDB and the local file system is used for block storage.

	Parallel operation processing

	Main hash algorithm: Keccak [https://keccak.team] 256, SHA-3

	Supports multiple hash algorithm: Keccak 256, Keccak 512, Raw bytes.

	Supports multiple message serialization format: JSON, BSON

	Small amount of code.

	JSON logging

Seal and Operation

Operation

In the Mitum blockchain network, an operation is a unit of command that changes data.

For example, Mitum Currency has operations of create-account, transfer, key-updater, currency-register, currency-policy-updater, and suffrage-infration.

Each operation requires a signature made with a private key according to its contents.

The fact in the operation contains the contents to be executed and the hash value summarizing the body of the fact.

Fact and token

Every operation contains a fact. In other words, the content of the operation is actually contained in the fact.

Facts play an important role in Mitum blockchain network.

	The fact hash is a value representing the processed operation.

	The fact hash must have a unique value in the blockchain.

	So to check whether the operation is stored in the block, it can be retrieved using the fact hash.

In fact, the contents of the facts can be duplicated.

For example,

- The contents that `sender A sends 100 to receiver B` must always have the same fact.
- Fact hashes created using the same fact content can result in duplicate values.
- If there are two or more operations that result in duplicate values of the fact hash, only the first operation is processed and the remaining operations are ignored.

If so, does that mean that operations with the same fact content cannot be duplicated?

Don’t worry, in each fact, we use a value called token to make it unique.

The token is a value added to the essential contents of the operation.

The following json file is an example of fact.

{
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "3Zdg5ZVdNFRbwX5WU7Nada3Wnx5VEgkHrDLVLkE8FMs1",
 "token": "cmFpc2VkIGJ5",
 "sender": "8PdeEpvqfyL3uZFHRZG5PS3JngYUzFFUGPvCg29C2dBnmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "333",
 "currency": "MCC"
 }
]
 }
]
}

The role of the token resembles that of a memo, but is capable of making a fact unique by giving different token values for the same fact content.

Making the fact that is essential for every operation unique expands usability in several ways.

	The biggest advantage is that you can simply check whether the operation is processed or not as you exactly know the contents of the fact along with the token.

	In the example above, anyone can calculate the fact hash if they know: the sender, receiver, currencyID, amount of currency, and a specific token value used.

	Therefore, anyone can inquire whether the corresponding operation has been processed with the fact hash.

A fact hash is like a public proof recorded in a blockchain. There can be various applications depending on how a user uses the evidence disclosed in the blockchain.

For example, even an outsider who does not have a direct account in the blockchain can check the fact hash, the only value indicating whether the operation is processed or not, and make the implementation based on that.

In addition, facts and tokens can practically be used in models that deal with various data including remittance.

Seal

Seal is a collection of operations transmitted to the network. In other words, the operation is contained in the seal and transmitted.

	To transmit the seal, a signature made with a private key is required.

	To create signature, you must use the private key created in Mitum’s keypair package.

	Seal can contain up to 100 operations.

The private key used for the signature has nothing to do with the blockchain account. In other words, it doesn’t have to be the private key used by the account.

Send

After creating an operation, the client creates and attaches a signature.

	Create as many operations as necessary within the maximum number able to be included in the seal, and put them in the seal.

	Create and put a signature on the seal.

	Send seal to Mitum node.

Stored in Block

The operation transmitted to the Blockchain network changes the state of the account if it is normal and is finally saved in the block.

Whether the operation is confirmed and saved in the block can be checked through rest api.

Block Data

Block data in Mitum Node

In the Mitum Node, block data is stored in two spaces: Database and File System.

	The database stores the information used for consensus, such as,

blockdata_map
info
manifest: block header
operation: operation fact
operation
proposal
seal
state: state data by each block
voteproof

	The file system stores all block data, such as,

manifest
operations of block
states of block
proposal
suffrage information
voteproofs(and init and accept ballots)

	Block data stored in the database is required to run the mitum node and participate in the network normally.

	Block data in the file system is not used at runtime, but is used to provide block data to syncing nodes.

An intact node must support block data for other nodes which want to synchronize block data.

BlockDataMap

By default, block data is stored in the local file system.

blockdatamap contains the information about where the actual block data is located.

{
 "_hint": "base-blockdatamap-v0.0.1",
 "hash": "2ojLCZwG5J7xmfoxiBbhvJsc6dDTxDFDsw1nfPneT2xr",
 "height": 2,
 "block": "BcXqCKG5MbQcfuFpPtjvHcNBGeK6Pz3aG2cMcp4MUy9C",
 "created_at": "2021-06-14T03:20:24.887Z",
 "items": {
 "operations_tree": {
 "type": "operations_tree",
 "checksum": "1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26",
 "url": "file:///000/000/000/000/000/000/002/2-operations_tree-1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26.jsonld.gz"
 },
 },
 "writer": "blockdata-writer-v0.0.1"
}

In this BlockDataMap example, the data of operation_tree is located at file:///000/000/000/000/000/000/002/2-operations_tree-1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26.jsonld.gz

BlockDataMap for block data stored in external storage

Mitum supports storing block data in external storage rather than the node’s local file system.

After going through a certain process to store block data externally, blockdatamap is modified as follows.

{
 "_hint": "base-blockdatamap-v0.0.1",
 "hash": "2ojLCZwG5J7xmfoxiBbhvJsc6dDTxDFDsw1nfPneT2xr",
 "height": 2,
 "block": "BcXqCKG5MbQcfuFpPtjvHcNBGeK6Pz3aG2cMcp4MUy9C",
 "created_at": "2021-06-14T03:20:24.887Z",
 "items": {
 "operations_tree": {
 "type": "operations_tree",
 "checksum": "1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26",
 "url": "fhttps://aws/2-operations_tree-1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26.jsonld.gz"
 },
 },
 "writer": "blockdata-writer-v0.0.1"
}

As you can see, the url is replaced with the external storage server.

How to update BlockDataMap for external Storage

For example, suppose that block data with a block height of 10 is moved to an external storage.

Here, we will do this using the node’s deploy key.

This deploy key of the node is a key that can be used instead of the private key.

See deploy key command in Deploy for how to create a deploy key.

The process of moving block data and updating blockdatamap is as follows.

	Get the new deploy key of mitum currency node.

	Download the current blockdatamap by using the storage download map command.

	Upload all the block data files of height 10 to external storage(example : AWS S3)

	Update the url field value of the downloaded BlockDataMap with the new url of external storage.

	Update the node’s blockdatamap by running the storage set-blockdatamaps command.

	Check the newly updated blockdatamap with storage download map command

After updating blockdatamap successfully, the mitum node will remove all the files with the height of 10 automatically after 30 minutes.

$ DEPLOY_KEY=d-974702df-89a7-4fd1-a742-2d66c1ead6cd

$ NODE=https://127.0.0.1:54321

$./mitum storage download map 10 --tls-insecure --node=$NODE > mapData

$ cat mapData | jq
{
 "_hint": "base-blockdatamap-v0.0.1",
 "hash": "2ojLCZwG5J7xmfoxiBbhvJsc6dDTxDFDsw1nfPneT2xr",
 "height": 2,
 "block": "BcXqCKG5MbQcfuFpPtjvHcNBGeK6Pz3aG2cMcp4MUy9C",
 "created_at": "2021-06-14T03:20:24.887Z",
 "items": {
 "operations_tree": {
 "type": "operations_tree",
 "checksum": "1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26",
 "url": "file:///000/000/000/000/000/000/002/2-operations_tree-1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26.jsonld.gz"
 },
 "manifest": {
 "type": "manifest",
 "checksum": "6e53950e3ab87008b2bcb9841461588456c3e1069458eb8b150f1bfb97d22d42",
 "url": "file:///000/000/000/000/000/000/002/2-manifest-6e53950e3ab87008b2bcb9841461588456c3e1069458eb8b150f1bfb97d22d42.jsonld.gz"
 },
 "suffrage_info": {
 "type": "suffrage_info",
 "checksum": "e7584f9b5324566d4c5319db33ece980000f9c29eaf4d17befcc239743788f02",
 "url": "file:///000/000/000/000/000/000/002/2-suffrage_info-e7584f9b5324566d4c5319db33ece980000f9c29eaf4d17befcc239743788f02.jsonld.gz"
 },
 "states": {
 "type": "states",
 "checksum": "d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59",
 "url": "file:///000/000/000/000/000/000/002/2-states-d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59.jsonld.gz"
 },
 "operations": {
 "type": "operations",
 "checksum": "d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59",
 "url": "file:///000/000/000/000/000/000/002/2-operations-d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59.jsonld.gz"
 },
 "proposal": {
 "type": "proposal",
 "checksum": "dbbce4aaa6aece06596ecd45068008d35a41f592339d8898501b55f5843dbefe",
 "url": "file:///000/000/000/000/000/000/002/2-proposal-dbbce4aaa6aece06596ecd45068008d35a41f592339d8898501b55f5843dbefe.jsonld.gz"
 },
 "init_voteproof": {
 "type": "init_voteproof",
 "checksum": "705af3bd660070813354b572288204d787a949fc5411f3e2bc28e86f07bc1e64",
 "url": "file:///000/000/000/000/000/000/002/2-init_voteproof-705af3bd660070813354b572288204d787a949fc5411f3e2bc28e86f07bc1e64.jsonld.gz"
 },
 "accept_voteproof": {
 "type": "accept_voteproof",
 "checksum": "0d4296d44f96a3de216a90f99d77bf77a00ecd5102d7bbba612b13a57bdf2f34",
 "url": "file:///000/000/000/000/000/000/002/2-accept_voteproof-0d4296d44f96a3de216a90f99d77bf77a00ecd5102d7bbba612b13a57bdf2f34.jsonld.gz"
 },
 "states_tree": {
 "type": "states_tree",
 "checksum": "1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26",
 "url": "file:///000/000/000/000/000/000/002/2-states_tree-1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26.jsonld.gz"
 }
 },
 "writer": "blockdata-writer-v0.0.1"
}

$ aws s3 cp ./blockdata/000/000/000/000/000/000/002 s3://destbucket/blockdata/000/000/000/000/000/000/002 --recursive
update mapData blockdata url from "file:///000/000/000/000/000/000/002/" to https://aws/"

$./mitum storage set-blockdatamaps $DEPLOY_KEY mapData $NODE --tls-insecure

$./mitum storage download map 2 --tls-insecure --node=$NODE
{
 "_hint": "base-blockdatamap-v0.0.1",
 "hash": "2ojLCZwG5J7xmfoxiBbhvJsc6dDTxDFDsw1nfPneT2xr",
 "height": 2,
 "block": "BcXqCKG5MbQcfuFpPtjvHcNBGeK6Pz3aG2cMcp4MUy9C",
 "created_at": "2021-06-14T03:20:24.887Z",
 "items": {
 "operations_tree": {
 "type": "operations_tree",
 "checksum": "1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26",
 "url": "fhttps://aws/2-operations_tree-1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26.jsonld.gz"
 },
 "manifest": {
 "type": "manifest",
 "checksum": "6e53950e3ab87008b2bcb9841461588456c3e1069458eb8b150f1bfb97d22d42",
 "url": "fhttps://aws/2-manifest-6e53950e3ab87008b2bcb9841461588456c3e1069458eb8b150f1bfb97d22d42.jsonld.gz"
 },
 "suffrage_info": {
 "type": "suffrage_info",
 "checksum": "e7584f9b5324566d4c5319db33ece980000f9c29eaf4d17befcc239743788f02",
 "url": "fhttps://aws/2-suffrage_info-e7584f9b5324566d4c5319db33ece980000f9c29eaf4d17befcc239743788f02.jsonld.gz"
 },
 "states": {
 "type": "states",
 "checksum": "d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59",
 "url": "fhttps://aws/2-states-d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59.jsonld.gz"
 },
 "operations": {
 "type": "operations",
 "checksum": "d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59",
 "url": "fhttps://aws/2-operations-d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59.jsonld.gz"
 },
 "proposal": {
 "type": "proposal",
 "checksum": "dbbce4aaa6aece06596ecd45068008d35a41f592339d8898501b55f5843dbefe",
 "url": "fhttps://aws/2-proposal-dbbce4aaa6aece06596ecd45068008d35a41f592339d8898501b55f5843dbefe.jsonld.gz"
 },
 "init_voteproof": {
 "type": "init_voteproof",
 "checksum": "705af3bd660070813354b572288204d787a949fc5411f3e2bc28e86f07bc1e64",
 "url": "fhttps://aws/2-init_voteproof-705af3bd660070813354b572288204d787a949fc5411f3e2bc28e86f07bc1e64.jsonld.gz"
 },
 "accept_voteproof": {
 "type": "accept_voteproof",
 "checksum": "0d4296d44f96a3de216a90f99d77bf77a00ecd5102d7bbba612b13a57bdf2f34",
 "url": "fhttps://aws/2-accept_voteproof-0d4296d44f96a3de216a90f99d77bf77a00ecd5102d7bbba612b13a57bdf2f34.jsonld.gz"
 },
 "states_tree": {
 "type": "states_tree",
 "checksum": "1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26",
 "url": "fhttps://aws/2-states_tree-1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26.jsonld.gz"
 }
 },
 "writer": "blockdata-writer-v0.0.1"
}

Blockchain Application Model

Mitum is designed to be used as a general purpose blockchain. To meet this requirement, the policy and data of Mitum can be configured and managed in a practical way.

In simpler terms, network designers will design their network in two parts:

	Data

	Policy

By configuring the data and policy, designers can build and launch their own model of network.

For example, suppose that a designer wants to build a currency model in Mitum. The designer can define several currencies and relative data and add additional policy.

Data types:

	account

	balance

Policy:

	total amount

	minimum amount of new balance

	multisig

	inflation

	etc…

The following figure shows the relationship between the Mitum blockchain core and the Mitum model.

[image: Mitum Blockchain Layer]

Digest Service

	Digest Service is an internal service that stores block data stored by Mitum separately to serve as HTTP-based API.

	The mitum-based model provides an API to query state.

	For more information on Digest Service, please refer to rest api.

Mitum-based models

	The Mitum model is a solution that can provide various services as an extension layer that extends the Mitum main chain.

	Mitum Currency

	Mitum Currency Extension

	Mitum Document

	Mitum Feefi

	Mitum NFT

Mitum Currency

What is Mitum Currency

	Mitum Currency is a currency model that operates on the Mitum blockchain networks.

	Mitum Currency allows you to register or update policies for a particular currency id, issue additional tokens, send tokens, create new currency accounts, and update account keys.

Features of Mitum Currency

	Mitum Currency provides core features to meet the business needs of various token-related fields.

	Multiple keys can be registered when creating an account, and related keys can be replaced through the key update operation.

	Mitum Currency can issue new currencies and related policies can be customized.

	Currency-related policy can be updated at any time as needed.

	A node key, not an account key, is required to adjust the policy for any current id.

	Account keys must be used to transfer tokens or update account keys.

	Mitum Currency has no compensation for block generation and there is also no inflation.

	The node configuration for the Mitum Currency network follows the node operation policy of the Mitum blockchain, and details can be found at Build Multi Nodes Network.

Support Operations

	Operations for Currency

	currency-register

	Register new currency id

	currency-policy-updater

	Update currency policy

	suffrage-infration

	Increase amount of tokens

	Operations for Account

	create-account

	Create new account

	key-updater

	Update account keys

	transfer

	Transfer amount of tokens

Refer to currency to check how to create those operations by commands.

Mitum Currency Extension

What is Mitum Currency Extension

	Mitum Currency extension is an extended model of Mitum Currency as its name suggests.

	Mitum Currency Extension supports the generation of contract accounts and the withdrawal of tokens from contract accounts in addition to the function of Mitum Currency.

Features of Mitum Currency Extension

	You can create a contract account, rather than a typical currency account, using Mitum Currency Extension.

	A contract account has an address, but it does not have account keys unlike regular accounts.

	Contract account cannot be an operation sender.

	Typically, a contract account cannot own or transfer tokens on its own, but the contract account owner can withdraw tokens from the contract account through withdrawal operation.

	Model designers can develop models that can register different user-defined states with contract accounts.

Support Operations

	Mitum Currency Extension contains operations of the Mitum Currency model.

	Operations for Contract Account

	create-contract-account

	Create new contract account

	withdraw

	Withdraw tokens from contract account

Refer to currency-extension to check how to create those operations by commands.

Mitum Document

What is Mitum Document

	Mitum Document is a tool that allows you to create, update, and sign documents.

	Mitum Document allows you to register various document items (blocksign, blockcity document, etc.), but here we describe them based on the most commonly used BlockSign model.

Features of Mitum Document

	Mitum Document corresponds to any form of document.

	You can register the document’s title, file hash, file size, signer, etc. together.

	The document creator can update the document.

	An account registered as a signer can sign the generated document as a document signer.

	Depending on the characteristics of the blockchain, the update history of the document is permanently stored in the blockchain.

Document ID

There is a document id suffix corresponding to each document type.

For blockcity,

	user doc: cui

	land doc: cli

	voting doc: cvi

	history doc: chi

For blocksign,

	blocksign doc: sdi

Support Operations

	Mitum Document contains operations of the Mitum Currency model.

	Operations for Document

	create-document

	Create new document

	update-document

	Update the registered document

	sign-document

	Sign the registered document

Refer to document to check how to create those operations by commands.

Mitum Feefi

What is Mitum Feefi

	Mitum Feefi is a finance model that operates on the Mitum blockchain networks.

	Mitum Feefi offers new token pair pool registration, pool policy update, pool deposit and withdrawal capabilities.

	The blockchain network on which Mitum Feefi operates is decentralized for fee exchange.

Features of Mitum Feefi

	Mitum Feefi can be used to pay the operation fee as a dApp token.

Support Operations

	Mitum Feefi contains operations of the Mitum Currency Extension model.

	Operations for Feefi Pool

	pool-register

	Register new feefi pool

	pool-policy-updater

	Update pool policy

	pool-deposit

	Deposit tokens to pool

	pool-withdraw

	Withdraw tokens from pool

Refer to feefi to check how to create those operations by commands.

Mitum NFT

What is Mitum NFT

	Mitum NFT is an nft model with creators and copywriters concepts.

	Mitum NFT provides the ability to register new nft collections, update collection policies, mint new nfts, transfer or burn nfts, sign nfts, and delegate rights to other accounts.

Features of Mitum NFT

	By Mitum NFT, it is possible to pre-set royalty information in NFT collections.

	NFT collection creators can whitelist accounts that can mint to the collection.

	When minting NFT, creator and copywriter information and shares for each of them can also be set.

	The creator or copywriter of the NFT may sign the NFT as a right holder.

Support Operations

	Mitum NFT contains operations of the Mitum Currency Extension model.

	Operations for NFT Collection

	collection-register

	Register new nft collection

	collection-policy-updater

	Update nft collection

	Operations for NFT

	mint

	Mint new nft

	sign

	Sign nft as creator or copyrighter

	transfer

	Transfer nft

	burn

	Burn(Deactivate) nft

	Operations for Delegation of Authority

	delegate

	Delegation of authority to nfts of collection

	approve

	Delegation of authority to any one nft

Refer to nft to check how to create those operations by commands.

Quick Start

In this part, we will introduce how to run a node.

You need to install docker and golang first.

For smooth explanation, Mitum Currency is used as an example in this chapter.

About Mitum Currency Node

Mitum Blockchain network uses PBFT-based ISAAC+ consensus protocol.

In the ISAAC+ consensus protocol, all nodes play the same role and participate in block generation.

Nodes participating in the network perform the following tasks.

	Making Proposal

	Block Verification

	Voting

	Storing Block

	Providing Digest API Service

	Transaction Requesting Collection

For more information on the Mitum Blockchain network, refer to Mitum Doc [https://mitum-doc.readthedocs.io/en/proto2/].

Prerequisite

Database

Mitum uses MongoDB as its main storage engine.

To run the node, you need to prepare mongodb first.

Installation and Setup

	Manual Installation Guide [https://docs.mongodb.com/manual/installation/]

	Using Docker Container [https://hub.docker.com/_/mongo],

$ docker run --name <db name> -it -p <host port>:<container port> -d mongo

	About DB setup, refer to Configuration.

Golang

Mitum and Mitum Models are developed using the programming language Go [https://golang.org].

To create an executable binary, you need the source code to be built from.

We do not provide detailed instructions for installing the Go language here.

You must have the Golang installed with at least version 1.17 to build Mitum.

For more information, refer to How to Install Go [https://go.dev/doc/install].

Installation

	Please download the source code of Mitum Currency [https://github.com/spikeekips/mitum-currency].

	Using Git,

$ git clone https://github.com/spikeekips/mitum-currency.git

	Build exe file.

$ cd mitum-currency

$ go build -ldflags="-X 'main.Version=v0.0.1-tutorial'" -o mitum ./main.go

$./mitum version
v0.0.1

	The installation method is the same for other models.

To see all instructions of Mitum and its models, refer to Command Line Interface.

Configuration

The configuration for node setting is written in YAML.

address

Address of local node(alias for url address)

address: n0sas

genesis-operations

genesis-operation is a setting for the genesis operation that is executed when the network is initialized.

genesis-operation contains the contents of the block that is initially created.

For example, in the currency model, information on the main currency and genesis account must be set.

It registers the information about,

	Keys of the genesis account (key, weight, threshold)

	Initial balance

	Currency ID

	Fee policy of the currency to be created

The following settings apply to all mitum models, including operations of the Mitum Currency model.

genesis-operations:
 - account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 new-account-min-balance: "33"
 type: genesis-currencies

network

Specify the domain address or IP address of the node used in the network.

Address is needed to receive messages from node or client, and the communication process uses quic communication protocol.

Self-signed certificates can be used to set up test node. You can use it for only test and development nodes where security is not a big concern.

$ openssl genrsa -out mitum.key 4096

$ openssl req -x509 -new -nodes -key mitum.key -sha256 -days 1024 -out mitum.crt

For example,

network:
 bind: https://0.0.0.0:54321
 url: https://127.0.0.1:54321
 cert-key: mitum.key
 cert: mitum.crt

rate-limit

API interface of internet service allows connection to the client without restriction.

However, overflowing requests can ruin the performance of service.

To maintain the service stable, rate limit can be applied to the API service.

See Rate limiting [https://en.wikipedia.org/wiki/Rate_limiting].

Mitum supports quic based API service for communication within nodes, even none-suffrages.

Mitum additionally supports http2 based API service, called digest.

rate-limit applied to these API services.

network:
 bind: https://0.0.0.0:54321
 url: https://127.0.0.1:54321

 rate-limit:
 cache: "memory:?prefix=showme"
 preset:
 bad-nodes:
 new-seal: 3/2m
 blockdata: 4/m
 3.3.3.3:
 preset: bad-nodes
 4.4.4.4/24:
 preset: bad-nodes
 blockdata: 5/m
 127.0.0.1/24:
 preset: suffrage

	cache: cache for requests. At this time, supports “memory:” and “redis://<redis server>”

	memory: memory cache

	redis://<redis server>: cached in redis server

	preset: predefined rate limit settings.

	For Mitum, suffrage and world presets are already defined. See launch/config/ratelimit.go [https://github.com/spikeekips/mitum/blob/master/launch/config/ratelimit.go] in the source code.

	You can make your own rate limit setting like bad-nodes.

	Rules:

	Rate-limit Settings for a specific IP

	Rules consist of IP address (or IP address range), preset and detailed rate-limit settings.

	The IP address can be a single value or a range of IP addresses expressed in CIDR notation.
* example : 3.3.3.3, 4.4.4.4/24, 127.0.0.1/24

	Rate limit can be set through preset and additional limits.

	preset can be pre-defined preset like suffrage, world or user-defined preset like bad-nodes.

	Additional limit such as blockdata: 5/m can be added to the preset.

	Rules will be checked by the defined order from upper to lower.

	Detailed limit:

	The API interface name for Mitum, such as new-seal, used to set the limit can be found in RateLimitHandleMap (launch/config/ratelimit.go).

	The API interface name for each model can be found in the RateLimitHandlerMap (digest/handler.go).

	new-seal: 3/2m means new-seal interface allows 3 requests per 2 minutes to the specified IP or IP range.

	See the manner of time duration.

	Without any rules, by default no rate limit.

A limit value less than zero means unlimited.

For example,

4.4.4.4/24:
preset: bad-nodes
blockdata: -1/m

The zero limit value means that the request is blocked.

For example,

4.4.4.4/24:
 preset: bad-nodes
 blockdata: 0/m

network-id

network id acts like an identifier that identifies a network.

All nodes on the same network have the same network id value.

For example,

network-id: mitum

keypair

Enter the node’s private key.

For example,

privatekey: Kxt22aSeFzJiDQagrvfXPWbEbrTSPsRxbYm9BhNbNJTsrbPbFnPAmpr

See key to learn how to create a key pair.

storage

Specify the file system path and mongodb database address of blockchain data storage.

If blockdata setting is missing, blockdata > path is set to a folder called blockdata in the current path by default.

For example,

storage:
blockdata:
 path: mitum-blockfs
database:
 uri: mongodb://127.0.0.1:27017/mc

port number should be the same as that of when running docker.

suffrage

nodes

Set addresses for suffrage nodes participating in consensus.

The alias name of the local node is n0sas.

If n0, n1, n2, n3 nodes are included in the suffrage nodes, it can be set as follows.

suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas

If the n0 node, which is a local node, is not included in the suffrage nodes, the local node becomes a None-suffrage node and serves only as a syncing node.

	The Syncing node does not participate in consensus and only syncs the generated block data.

	The None-suffrage node handles only the seal containing the operation.

	The None-suffrage node does not process ballots and proposals related to voting between nodes.

	When the None-suffrage node stores the operation seal, it broadcasts the seal to the suffrage nodes.

If the None-suffrage node does not add other nodes to the suffrage node, or does not configure other suffrage nodes, operation seal cannot be processed.

suffrage:
 nodes:
 - n1sas
 - n2sas
 - n3sas

sync-interval

None-suffrage node periodically syncs block data.

The default interval is 10 seconds.

You can change the interval value through the sync-interval setting.

sync-interval: 3s

nodes

Write the address (alias for the address), public key, and url (ip address) of known nodes in the blockchain network.

	If not written, it operates as a standalone node.

	If the node is a suffrage node and the node discovery function is used, the url of the node is not required.

	However, if the node is not a suffrage node, the ``url``s of the suffrage nodes must be included.

Mitum nodes use CA signed certificate (public certificate) by default.

	If certificate related settings are not made in Network config, the node uses self-signed certificate.

	If other Mitum nodes use self-signed certificate, tls-insecure: true should be set to all the nodes which use self-signed certificate.

(In case of suffrage node)

nodes:
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 tls-insecure: true

(If it is not a suffrage node)

nodes:
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 url: https://127.0.0.1:54331
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 url: https://127.0.0.1:54341
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 url: https://127.0.0.1:54351
 tls-insecure: true

digest

Specify the mongodb address that stores the data to be provided by the API and the IP address of the API access.

digest:
 network:
 bind: https://localhost:54320
 url: https://localhost:54320
 cert-key: mitum.key
 cert: mitum.crt

tutorial.yml

This is an example of standalone node configuration for Mitum Currency.

address: mc-nodesas
privatekey: Kxt22aSeFzJiDQagrvfXPWbEbrTSPsRxbYm9BhNbNJTsrbPbFnPAmpr
storage:
 database:
 uri: mongodb://127.0.0.1:27017/mc
 blockdata:
 path: mitum-blockfs
network-id: mitum
network:
 bind: https://0.0.0.0:54321
 url: https://127.0.0.1:54321
 cert-key: mitum.key
 cert: mitum.crt
genesis-operations:
 - type: genesis-currencies
 account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 new-account-min-balance: "33"
 feeer:
 type: fixed
 amount: 1
policy:
 threshold: 100
suffrage:
 nodes:
 - mc-nodesas
digest:
 network:
 bind: https://0.0.0.0:54320
 url: https://127.0.0.1:54320
 cert-key: mitum.key
 cert: mitum.crt

Run

Here we will explain the process for running the node.

Note

	A node can find out the addresses of all nodes by using the node discovery protocol.

	Digest API is included in Mitum models, so API service is provided by default.

	Please check Configuration for Digest setting.

	If Digest is not set, data for API service must be processed separately.

Running the Standalone Node

Before running a node, please prepare a config file by refering to Configuration.

node init

First, the genesis block and genesis account must be created. The main currency is issued through the generation of the genesis block and stored in the balance of the genesis account.

$./mitum node init --log-level info <config file>
2021-06-10T05:13:09.232802Z INF dryrun? dryrun=false module=command-init
2021-06-10T05:13:09.235942Z INF prepare to run module=command-init
2021-06-10T05:13:09.236013Z INF prepared module=command-init
2021-06-10T05:13:09.780335419Z INF genesis block created block={"hash":"6HjkXEhTNhPzUTG167jsTEany3dHebDQ5cKGNTNEzcgh","height":0} module=command-init
2021-06-10T05:13:10.786661419Z INF stopped module=command-init
...

Note

If there is already a saved block data, an error environment already exists: block=0 occurs. To reset the error and ignore it, run it by adding the --force option.

$./mitum init <config file> --force

node run

When the node starts to run, the blockchain’s storage status and consensus participation status are changed to SYNC, JOIN, and CONSENSUS modes, and block generation starts.

$./mitum node run --log-level info <config file>
2021-06-10T05:14:08.225487Z INF dryrun? dryrun=false module=command-run
2021-06-10T05:14:08.228797Z INF prepare to run module=command-run
2021-06-10T05:14:08.228869Z INF prepared module=command-run
2021-06-10T05:14:09.706271049Z INF new blocks found to digest last_block=-2 last_manifest=0 module=command-run
2021-06-10T05:14:09.827980049Z INF digested new blocks module=command-run
2021-06-10T05:14:09.828967049Z INF trying to start http2 server for digest API bind=https://localhost:54320 module=command-run publish=https://localhost:54320
2021-06-10T05:14:11.894638049Z INF new block stored block={"hash":"CC57VpSKPozBRABPnznyMk6QY4GHn7CiSH4zSZBs8Rri","height":1,"round":0} elapsed=17.970959 module=basic-consensus-state proposal_hash=DJBgmoAJ4ef7h7iF6E3gTQ83AjWxbGDGQrmDSiQMrfya voteproof_id=BAg2HCNfBenFebuCM4P4HkDfF1off8FCBcSejdK1j7w6
2021-06-10T05:14:11.907600049Z INF block digested block=1 module=digester

Lookup Genesis Account

You can check genesis account information through block files saved in the file system.

For example,

$ find blockfs -name "*-states-*" -print | xargs -n 1 gzcat | grep '^{' | jq '. | select(.key == "9g4BAB8nZdzWmrsAomwdvNJU2hA2psvkfTQ5XdLn4F4r-mca:account") | ["height: "+(.height|tostring), "state_key: " + .key, "address: " + .value.value.address, .operations, .value.value.keys.keys, .value.value.keys.threshold]'
[
 "height: 0",
 "state_key: 9g4BAB8nZdzWmrsAomwdvNJU2hA2psvkfTQ5XdLn4F4r-mca:account",
 "address: CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 [
 "ECSDvWwxcjbEw2F3E6n6pyQXMsZn2uy7msX19XXDCYi8"
],
 [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu"
 }
],
 100
]

$ find blockfs -name "*-states-*" -print | xargs -n 1 gzcat | grep '^{' |jq '. | select(.key == "9g4BAB8nZdzWmrsAomwdvNJU2hA2psvkfTQ5XdLn4F4r-mca-MCC:balance") | ["height: "+(.height|tostring), "state_key: " + .key, "balance:" + .value.value.amount]'
[
 "height: 0",
 "state_key: 9g4BAB8nZdzWmrsAomwdvNJU2hA2psvkfTQ5XdLn4F4r-mca-MCC:balance",
 "balance:99999999999999999999"
]

	height, address of genesis account at 0, CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca is saved in block.

Lookup using Digest API

Account information can also be checked through Digest API.

The api address according to the digest setting Configuration is https://localhost:54320.

Check genesis account through account information.

$ curl --insecure http://localhost:54320/account/CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca | jq '{_embedded}'
{
 "_embedded": {
 "_hint": "mitum-currency-account-value-v0.0.1",
 "hash": "6vCuuiqaYtNGfPbqfDqA234kiDoueWejd7jMs7dwvq5U",
 "address": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "9g4BAB8nZdzWmrsAomwdvNJU2hA2psvkfTQ5XdLn4F4r",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu"
 }
],
 "threshold": 100
 },
 "balance": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "99999999999999999999",
 "currency": "MCC"
 }
],
 "height": 0,
 "previous_height": -2
 }
}

Build Multi Nodes Network

Order of Execution

	When executing a multi node, the first node that creates the genesis block must be determined. The first node creates the genesis block through the node init command. Nodes other than the one that creates the genesis block do not need to execute the init command.

	The first node executes the node through the run command after init.

	Other nodes also execute each node through the run command.

	Other nodes follow the block of the first node through the sync process, and the nodes create blocks through the consensus process.

If there are 4 nodes and n0 node is the first node, the execution order is as follows. If all four nodes are suffrage nodes, nodes must set at least one other node publish url as the discovery url for node discovery.

n0 node
$./mitum node init <n0 config file>
$./mitum node run <n0 config file> --discovery <n1 public url>

n1 node
$./mitum node run <n1 config file> --discovery <n0 publish url>

n2 node
$./mitum node run <n2 config file> --discovery <n0 publish url>

n3 node
$./mitum node run <n3 config file> --discovery <n0 publish url>

Note

If running in the same network, nodes should have the same value for the next item in the configuration file.

	genesis-operations

	network-id

Four Suffrage Nodes

Let’s suppose we are in case of operating suffrage 4 nodes.

First, prepare a separate yml configuration file for each node.

n0, n1, n2, n3 are all suffrage nodes.

[image: Four Suffrage Nodes]

Depending on the configuration of the node, it is necessary to configure the nodes participating in consensus.

Only ``suffrage`` and ``nodes`` part of configuration of suffrage nodes

suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n0sas
 publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
 tls-insecure: true
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 tls-insecure: true

The following one is an example of the full yml configuration for all nodes.

n0 node

address: n0sas
genesis-operations:
 - account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 type: genesis-currencies
network:
 bind: https://0.0.0.0:54321
 url: https://127.0.0.1:54321
network-id: mitum
policy:
 threshold: 100
privatekey: Kxt22aSeFzJiDQagrvfXPWbEbrTSPsRxbYm9BhNbNJTsrbPbFnPAmpr
publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
storage:
 blockdata:
 path: ./n0_data/blockfs
 database:
 uri: mongodb://127.0.0.1:27017/n0_mc
suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 tls-insecure: true

n1 node
address: n1sas
genesis-operations:
 - account-keys:
 keys:
 - privatekey: L5GTSKkRs9NPsXwYgACZdodNUJqCAWjz2BccuR4cAgxJumEZWjokmpr
 publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 type: genesis-currencies
network:
 bind: https://0.0.0.0:54331
 url: https://127.0.0.1:54331
network-id: mitum
policy:
 threshold: 100
privatekey: L4R2AZVmxWUiF2FrNEFi6rHwCTdDLQ1JuQHji69SbMcmWUdNMUSFmpr
publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
storage:
 blockdata:
 path: ./n1_data/blockfs
 database:
 uri: mongodb://127.0.0.1:27018/n1_mc
suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n0sas
 publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 tls-insecure: true

n2 node
address: n2sas
genesis-operations:
 - account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 type: genesis-currencies
network:
 bind: https://0.0.0.0:54332
 url: https://127.0.0.1:54332
network-id: mitum
policy:
 threshold: 100
privatekey: L3Szj4t3w33YLsGFGeaB3v1vwae82yp5KWPcT7v1Y4WyQkAH7eCRmpr
publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
storage:
 blockdata:
 path: ./n2_data/blockfs
 database:
 uri: mongodb://127.0.0.1:27019/n2_mc
suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n0sas
 publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
 tls-insecure: true
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 tls-insecure: true

n3 node
address: n3sas
genesis-operations:
 - account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 type: genesis-currencies
network:
 bind: https://0.0.0.0:54333
 url: https://127.0.0.1:54333
network-id: mitum
policy:
 threshold: 100
privatekey: KwxfBSzwevSggJz2grf8FWrjvXzrctY3WismTy6GNdJpWXe5tF5Lmpr
publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
storage:
 blockdata:
 path: ./n3_data/blockfs
 database:
 uri: mongodb://127.0.0.1:27020/n3_mc
suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n0sas
 publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
 tls-insecure: true
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 tls-insecure: true

Four Suffrage Nodes and One Sync Node

In case of operating four suffrage nodes and one sync node(non-suffrage node),

Prepare a separate yml configuration file for each node.

n0, n1, n2, n3 are suffrage nodes and n4 is the sync node.

[image: Four Suffrage Nodes]

Only suffrage and nodes part of configuration of suffrage nodes(n0, n1, n2, n3) are like,

suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n0sas
 publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
 tls-insecure: true
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 tls-insecure: true

Only suffrage and nodes part of configuration of sync node(n4) are like,

suffrage and nodes part of configuration

suffrage:
 nodes:
 - n1sas
 - n3sas
nodes:
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 url: https://127.0.0.1:54331
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 url: https://127.0.0.1:54351
 tls-insecure: true

The following one is an example of the full yml configuration for all nodes.

n0 node(Suffrage node)

address: n0sas
genesis-operations:
 - account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 type: genesis-currencies
network:
 bind: https://0.0.0.0:54321
 url: https://127.0.0.1:54321
network-id: mitum
policy:
 threshold: 100
privatekey: Kxt22aSeFzJiDQagrvfXPWbEbrTSPsRxbYm9BhNbNJTsrbPbFnPAmpr
publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
storage:
 blockdata:
 path: ./n0_data/blockfs
 database:
 uri: mongodb://127.0.0.1:27017/n0_mc
suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 tls-insecure: true

n1 node(Suffrage node)

address: n1sas
genesis-operations:
 - account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 type: genesis-currencies
network:
 bind: https://0.0.0.0:54331
 url: https://127.0.0.1:54331
network-id: mitum
policy:
 threshold: 100
privatekey: L4R2AZVmxWUiF2FrNEFi6rHwCTdDLQ1JuQHji69SbMcmWUdNMUSFmpr
publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
storage:
 blockdata:
 path: ./n1_data/blockfs
 database:
 uri: mongodb://127.0.0.1:27018/n1_mc
suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n0sas
 publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 tls-insecure: true

n2 node(Suffrage node)

address: n2sas
genesis-operations:
 - account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 type: genesis-currencies
network:
 bind: https://0.0.0.0:54332
 url: https://127.0.0.1:54332
network-id: mitum
policy:
 threshold: 100
privatekey: L3Szj4t3w33YLsGFGeaB3v1vwae82yp5KWPcT7v1Y4WyQkAH7eCRmpr
publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
storage:
 blockdata:
 path: ./n2_data/blockfs
 database:
 uri: mongodb://127.0.0.1:27019/n2_mc
suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n0sas
 publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
 tls-insecure: true
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 tls-insecure: true

n3 node(Suffrage node)

address: n3sas
genesis-operations:
 - account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 type: genesis-currencies
network:
 bind: https://0.0.0.0:54333
 url: https://127.0.0.1:54333
network-id: mitum
policy:
 threshold: 100
privatekey: KwxfBSzwevSggJz2grf8FWrjvXzrctY3WismTy6GNdJpWXe5tF5Lmpr
publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
storage:
 blockdata:
 path: ./n3_data/blockfs
 database:
 uri: mongodb://127.0.0.1:27020/n3_mc
suffrage:
 nodes:
 - n0sas
 - n1sas
 - n2sas
 - n3sas
nodes:
 - address: n0sas
 publickey: skRdC6GGufQ5YLwEipjtdaL2Zsgkxo3YCjp1B6w5V4bDmpu
 tls-insecure: true
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 tls-insecure: true
 - address: n2sas
 publickey: wfVsNvKaGbzB18hwix9L3CEyk5VM8GaogdRT4fD3Z6Zdmpu
 tls-insecure: true

n4 node(Sync node)

address: n4sas
genesis-operations:
 - account-keys:
 keys:
 - publickey: rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu
 weight: 100
 threshold: 100
 currencies:
 - balance: "99999999999999999999"
 currency: MCC
 type: genesis-currencies
network:
 bind: https://0.0.0.0:54334
 url: https://127.0.0.1:54334
network-id: mitum
policy:
 threshold: 67
privatekey: KyKM3JtH8M9iBQrcFx4Lubi13Bg8pUPVYvxhihEfkiiqRRWYjjr4mpr
publickey: 2BQkVjJpMdx4BFEhfTtf1oTaG4nLN148Dfax3ZnWybA2bmpu
storage:
 blockdata:
 path: ./n4_data/blockfs
 database:
 uri: mongodb://127.0.0.1:27021/n4_mc
suffrage:
 nodes:
 - n1sas
 - n3sas
nodes:
 - address: n1sas
 publickey: ktJ4Lb6VcmjrbexhDdJBMnXPXfpGWnNijacdxD2SbvRMmpu
 url: https://127.0.0.1:54331
 tls-insecure: true
 - address: n3sas
 publickey: vAydAnFCHoYV6VDUhgToWaiVEtn5V4SXEFpSJVcTtRxbmpu
 url: https://127.0.0.1:54333
 tls-insecure: true

Node Discovery Scenario

This is an example of a scenario for Node Discovery.

case 0

All nodes are looking at each other
discoveries of n0: n1, n2
discoveries of n1: n0, n2
discoveries of n2: n0, n1
all joined

[image: Node Discovery Case 0]
case 1

All nodes are looking at the same node and only one node is looking at the other node.
discoveries of n0: n1
discoveries of n1: n0
discoveries of n2: n0
all joined

[image: Node Discovery Case 0]
case 2

All nodes are looking at each other.
discoveries of n0: n1
discoveries of n1: n2
discoveries of n2: n1
all joined

[image: Node Discovery Case 0]
case 3

One node is looking at no one, but another node is looking at it.
discoveries of n0: none
discoveries of n1: n2
discoveries of n2: n0
all joined

[image: Node Discovery Case 0]
case 4

A node sees no one, but no other nodes see it.
discoveries of n0: none
discoveries of n1: n2
discoveries of n2: n1
n1, n2: connected to each other
n0: disconnected

[image: Node Discovery Case 0]

Node Handover

Here we will explain the process of node handover.

What is Handover?

Handover is a feature that allows a running node to be replaced without stopping.

	Nodes participating in the consensus process in the entire network may need to be replaced due to various circumstances.

	There may be cases where the program running the node needs to be updated or moved to another cloud service, or the node fails. In such cases, you can replace an already running node with an alternate node without stopping it.

Handover is one of the key features that can support public networks in the future.

Handover Scenario

	Node A: the running node

	Node A-sub: the node to be replaced

	Condition: A-sub must have the same configuration as A. However, the value of network.url must be different.

Node A’s Configuration

address: Asas
network-id: mitum
network:
 url: https://172.17.0.1:54321
privatekey: KyfqCLSEyfUhskZ63WtVH3m3pGgnurFHuTgkgu73Pgyjf8sxbp8Rmpr

Node A-sub’s Configuration

address: Asas
network-id: mitum
network:
 url: https://172.17.0.2:54321
privatekey: KyfqCLSEyfUhskZ63WtVH3m3pGgnurFHuTgkgu73Pgyjf8sxbp8Rmpr

How to Run

Under the scenario above, it follows the steps below.

	A is running as a suffrage node and wants to replace it with A-sub.

	After confirming that A is in CONSENSUS state, run A-sub with node run command using the above config.

	A-sub performs synchronization by collecting previous block data and enters SYNCING state.

	After confirming that the A-sub has changed to SYNCING state, execute the start-handover command on A-sub node.

$./mitum node start-handover \
 "Asas" \
 "KyfqCLSEyfUhskZ63WtVH3m3pGgnurFHuTgkgu73Pgyjf8sxbp8Rmpr" \
 "mitum" \
 "https://172.17.0.2:54321"

	When B finishes syncing, Handover starts.

	A is switched from CONSENSUS state to SYNCING state, and A-sub performs the consensus process on behalf of A.

	Other nodes in the suffrage network add A-sub as a suffrage node instead of A and proceed with the consensus process.

	Operation Seals delivered to A are delivered to other nodes.

What If a start-handover is sent to A after the Handover is over?

	A replaced by A-sub is converted to SYNCING state.

	After the handover is finished, A is internally converted to the same state as A-sub before the start-handover command.

	If a start-handover command is delivered to A in this state, from then on, A attempts to replace A-sub.

How can I check that the start-handover is finished?

	When checking NodeInfo of A-sub, it is changed to CONSENSUS state.

	Once A’s NodeInfo is checked, if it is changed to SYNCING state, handover is succesfully completed.

Command Line Interface

In this part, we will introduce the commands supported by Mitum and how to utilize them.

There are seven major commands it supports,

	version

	node

	key

	seal

	storage

	deploy

	quic-client

You may be familiar with node command if you have already been to Run page.

The operation of each model can be generated using the seal command.

It is easy to use the version and quic-client commands. We will now explain the rest of the commands one by one.

Summary

The following commands are only available in models that contain operations of Mitum Currency, and other commands are commonly used in all models.

	seal create-account

	seal transfer

	seal key-updater

	seal currency-register

	seal currency-policy-updater

	seal suffrage-inflation

As an example, these are all the commands that Mitum Currency provides.

$./mitum-currency --help

Usage: mitum-currency <command>

mitum-currency tool

Flags:
 -h, --help Show context-sensitive help.

Commands:
 version version

 node node
 init initialize node
 <node design file> node design file
 run run node
 <node design file> node design file
 info node information
 <node url> remote mitum url
 start-handover start handover
 <node address>
 <private key of node>
 <network-id>
 <new node url> new node url

 key key
 new new keypair
 verify verify key
 <key> key
 address generate address from key
 [<threshold>] threshold for keys (default: 100)
 [<key> ...] key for address (ex: "<public key>,<weight>")
 sign signature signing
 <privatekey> privatekey
 <signature base> signature base for signing

 seal seal
 send send seal to remote mitum node
 <privatekey> privatekey for sign
 create-account create new account
 <privatekey> privatekey to sign operation
 <sender> sender address
 <currency-amount> ... amount (ex: "<currency>,<amount>")
 transfer transfer big
 <privatekey> privatekey to sign operation
 <sender> sender address
 <receiver> receiver address
 <currency-amount> ... amount (ex: "<currency>,<amount>")
 key-updater update keys
 <privatekey> privatekey to sign operation
 <target> target address
 <currency> currency id
 currency-register register new currency
 <privatekey> privatekey to sign operation
 <currency-id> currency id
 <genesis-amount> genesis amount
 <genesis-account> genesis-account address for genesis balance
 currency-policy-updater update currency policy
 <privatekey> privatekey to sign operation
 <currency-id> currency id
 suffrage-inflation suffrage inflation operation
 <privatekey> privatekey to sign operation
 <inflation item> ... ex: "<receiver address>,<currency>,<amount>"
 sign sign seal
 <privatekey> sender's privatekey
 sign-fact sign facts of operation seal
 <privatekey> sender's privatekey

 storage storage
 download download block data
 <data type> data type of block data,
 {manifest,operations,operations_tree,states,states_tree,init_voteproof,accept_voteproof,suffrage_info,proposal all}
 <height> ... heights of block
 verify-blockdata verify block data
 <blockdata path>
 verify-database verify database
 <database uri>
 <blockdata path>
 clean clean storage
 <node design file> node design file
 clean-by-height clean storage by height
 <node design file> node design file
 <height> height of block
 restore restore blocks from blockdata
 <node design file> node design file
 set-blockdatamaps set blockdatamaps
 <deploy key>
 <maps file> set blockdatamap file
 [<node url>] remote mitum url; default: quic://localhost:54321

 deploy deploy
 key deploy key
 new request new deploy key
 <private key of node>
 <network-id>
 [<node url>] remote mitum url; default: quic://localhost:54321
 keys deploy keys
 <private key of node>
 <network-id>
 [<node url>] remote mitum url; default: quic://localhost:54321
 key deploy key
 <deploy key>
 <private key of node>
 <network-id>
 [<node url>] remote mitum url; default: quic://localhost:54321
 revoke revoke deploy key
 <deploy key>
 <private key of node>
 <network-id>
 [<node url>] remote mitum url; default: quic://localhost:54321

 quic-client quic-client
 <node url> remote mitum url

Run "mitum-currency <command> --help" for more information on a command.

Key Generation

key

The key command generates keypairs, gets addresses from keys, and gets signature.

The subcommands of the key command are as follows.

	new

	address

	sign

Note

Keypair

	Private key and public key are created through keypair generation.

	The generated keypair is used to create an account, register a keypair of a node, and create a signature of operation and seal.

new

The new is used for creating a new keypair.

Random Keypair

Use the following to create a random keypair without any seed.

$./mitum key new

EXAMPLE

$./mitum key new
 hint: mpr
privatekey: L1ZERchoY53vC5TJQ3WnZEWmg97L2Utw5rgFrCwM7ekTu9zJkZYjmpr
 publickey: 28nFxuC5ETygieSGEYTkewwnCZseB4TNYGMRtxz31bvxzmpu

Keypair from Seed

Use the following to create a keypair from a seed. Note that the length of string seed must be longer than or equal to 36.

$./mitum key new --seed <string seed>

EXAMPLE

$./mitum key new --seed abcdefghijklmnopqrstuvwxyzABCDEFGHIJ
 hint: mpr
privatekey: KypAAGYtVFdTFLS8muPJhwfJBFCFHKSe594yYmKK3FPteh7sie4Dmpr
 publickey: 25BcZrcyiE3TD2BZEqkdDuaYB9zHxpdW82BNn8HkCLTijmpu

address

The address command is used for generating addresses from keys.

You should prepare (public key, weight) pairs and threshold for the account. Refer to below Multi Sig Account for details.

$./mitum key address <threshold> [<publickey>,<weight>]

EXAMPLE

For example, let’s say that the information of the account is given by the table below, then the address command is used as follows.

	threshold

	100

	keys

	{key: 21Sn1o…, weight: 50}, {key: utzCef…, weight: 50}

$./mitum key address 100 21Sn1owHXRx336aaerU1WbbKjiZXMcrJsnxBHP9etNx6zmpu,50 utzCefA1Szmmt3rAwqW5yEhxK1x3hG3Y3yThEK3gZmv3mpu,50
37x8YoAGA93B3HmDVNterRf1NTgz9tfN1gQn4jYuBYCHmca

However, you won’t get correct address if the keys of the account have been updated by the key-updater command. Refer to key-updater.

Multi Sig Account

	Account is a data structure that has currency and balance in Mitum Currency.

	Account has a unique value called address and can be identified through this.

	Register a public key for user’s Account authentication.

	Mitum Currency accounts can register multiple public keys because multi signatures are possible.

For example, an account under following condition is available.

	address

	HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

	threshold

	100

	keys

	{key: rd89Gx…, weight: 50}, {key: skRdC6…, weight: 50}

	balance

	{currency: MCC, amount: 10000}, {currency: MCC2, amount: 20000}

Note

There are several conditions that each account should follow.

	The range of threshold should be 1 <= threshold <= 100.

	The range of each weight should be 1 <= weight <= 100.

	The sum of every weight of the account should be greater than or equal to threshold.

	Each key must be a BTC compressed public key with suffix mpu.

	mca follows the address as a suffix.

These are examples of available account states.

CASE1 (single)

	threshold: 100

	keys: {key: rd89Gx…, weight: 100}

CASE2 (single)

	threshold: 50

	keys: {key: rd89Gx…, weight: 60}

CASE3 (multi)

	threshold: 100

	keys: {key: rd89Gx…, weight: 40}, {key: skRdC6…, weight: 30}, {key: mymMwq…, weight: 30}

CASE4 (multi)

	threshold: 50

	keys: {key: rd89Gx…, weight: 20}, {key: skRdC6…, weight: 20}, {key: mymMwq…, weight: 10}

Even in the same publickey combination, address will have different values if weight or threshold are different.

sign

The sign command is used for getting the signature of the private key for a specific message.

$./mitum key sign <privatekey> <signature base>

EXAMPLE

$mitum key sign L5nDx2QtZVBPtJvUQ13cj3bMhC487JdxrwXTdS6JgzTvnSHestCxmpr bWVzc2FnZQ=
381yXZHrm73kGD8z7FAksBjxy49wPRWn3WRdP22befdbFff6WYSdK8rz9TLpFWuEW7rmmphF3rHkrvTPvhVQ5kXNGLmELBwZ

Note that signature base is string encoded by base64.

Node Management

node

The node command initializes nodes and runs nodes.

The subcommands of the node command are as follows.

	init

	run

	start-handover

	info

init

The init command is used for initializing the node with the node design file containing the node configuration.

See node init for a detailed explanation of the init command.

$./mitum node init <node design file>

run

The run command is used for running the node with the node design file containing the node configuration.

See node run for a detailed explanation of the run command.

$./mitum node run <node design file>

If the node is a suffrage node, the addresses of other live suffrage nodes can be found using the Node discovery protocol. The node discovery feature is only supported when the node is a suffrage node.

	When the suffrage node starts up, it is possible to determine the network information of all suffrage nodes without publishing url information of all suffrage nodes.

	For node discovery, a node must set the address of one or more suffrage nodes it knows to a discovery url at startup.

To specify the discovery url, use the –discovery command line option.

$./mitum node run config.yml --discovery "https://node1#insecure" --discovery "https://node2#insecure"

	Even if a node does not set the discovery url by itself, if another suffrage node designates this node as a discovery node, the publish url of other nodes is known by the gossip protocol. If the nodes specified by discovery are not running, it keeps trying until it succeeds.

	Again, node discovery only works with suffrage nodes. For nodes not included in the suffrage node list, the urls of other suffrage nodes are still specified in the node settings.

	If you set the log level to info, you can easily check the information of the newly created block.

–log command line option can collect logs to the specific files.

Mitum dumps huge debugging log messages, including quic (http) request message like this,

"l":"debug","module":"http2-server","ip":"127.0.0.1","user_agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Safari/605.1.15","req_id":"c30q3kqciaejf9nj79c0","status":200,"size":2038,"duration":0.541625,"content-length":0,"content-type":"","headers":{"Accept-Language":["en-us"],"Connection":["keep-alive"],"Upgrade-Insecure-Requests":["1"]},"host":"127.0.0.1:54320","method":"GET","proto":"HTTP/1.1","remote":"127.0.0.1:55617","url":"/","t":"2021-06-10T05:23:31.030086621Z","caller":"/Users/soonkukkang/go/pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210609043008-298f37780037/network/http.go:61","m":"request"

–network-log command line option can collect these request messages to the specific files.

$./mitum node run \
 --log-level debug \
 --log-format json \
 --log ./mitum.log \
 --network-log ./mitum-request.log \
 ./config.yml

Multiple file can be set to –network-log and –log.

–network-log option will also collect the requests log from digest API (http2).

–network-log option is only available in node run command.

start-handover

The start-handover command is used for replacing the running node with another node.

See Node Handover for a detailed explanation of the start-handover command.

$./mitum node start-handover <node address> <private key of node> <network-id> <new node url>

info

The info command is used for getting the information of the remote node with the node’s url.

$./mitum node info <node url>

EXAMPLE

$./mitum node info https://127.0.0.1:54321 --tls-insecure --pretty
{
 "_hint": "mitum-currency-node-info-v0.0.1",
 "node": {
 "_hint": "base-node-v0.0.1",
 "address": "mc-nodesas",
 "publickey": "27P4S2FdDALmg4QzShCDTDne1pe8y1H2bE2uQCVpnqWpumpu",
 "url": "https://127.0.0.1:54321"
 },
 "network_id": "bWl0dW0=",
 "state": "CONSENSUS",
 "last_block": {
 "_hint": "block-manifest-v0.0.1",
 "hash": "5Z2SFA6DqYg8KdRPAD4uXAM7wpPE6vjyQ5iWqu4sc1yP",
 "height": 421,
 "round": 0,
 "proposal": "3H5wmRqvnburtEMqvkLh11vetbbdsdvHAkJRM6L6nu3Z",
 "previous_block": "J3if3xYD1wUQxUnm52UpddHT4Dipsd35bYGQxurMGnXm",
 "block_operations": null,
 "block_states": null,
 "confirmed_at": "2021-06-10T07:04:31.378699784Z",
 "created_at": "2021-06-10T07:04:31.390856784Z"
 },
 "version": "v0.0.0",
 "url": "https://127.0.0.1:54321",
 "policy": {
 "network_connection_timeout": 3000000000,
 "max_operations_in_seal": 10,
 "max_operations_in_proposal": 100,
 "interval_broadcasting_init_ballot": 1000000000,
 "wait_broadcasting_accept_ballot": 1000000000,
 "threshold": 100,
 "interval_broadcasting_accept_ballot": 1000000000,
 "timeout_waiting_proposal": 5000000000,
 "timespan_valid_ballot": 60000000000,
 "interval_broadcasting_proposal": 1000000000,
 "suffrage": "{\"type\":\"\",\"cache_size\":10,\"number_of_acting\":1}"
 },
 "suffrage": [
 {
 "_hint": "base-node-v0.0.1",
 "address": "mc-nodesas",
 "publickey": "27P4S2FdDALmg4QzShCDTDne1pe8y1H2bE2uQCVpnqWpumpu",
 "url": "https://127.0.0.1:54321"
 }
]
}

storage

The storage command helps download, verify, and restore block data.

The subcommands related to storage command are as follows.

	download

	verify-blockdata

	verify-database

	clean

	clean-by-height

	restore

	set-blockdatamaps

download

The download command is used for downloading block data of specific blockheight.

$./mitum storage download --node=quic://localhost:54321 <data type> <height> ...

EXAMPLE

$./mitum storage download --tls-insecure --node=https://127.0.0.1:54321 --save=data all -- -1 0 1 2 3 4 5
2021-06-08T10:50:08.018561Z INF saved file=data/000/000/000/000/000/000/0_1/-1-manifest-48cfbadd18b892bfd0a6fa230ff0c5f719bd517d37f594012aeca7244ef12599.jsonld.gz height=-1 module=command-block-download
2021-06-08T10:50:08.018531Z INF saved file=data/000/000/000/000/000/000/000/0-manifest-307ffa78d4ce5e32e25347f5ec8ee626e44d41e55f565c2082ac00f8f128dbd9.jsonld.gz height=0 module=command-block-download
2021-06-08T10:50:08.058628Z INF saved file=data/000/000/000/000/000/000/0_1/-1-operations-0fedf0c3ccb08aea5694e04a382ca04fb1338dfc9c2c408fe6296c93c0931124.jsonld.gz height=-1 module=command-block-download
2021-06-08T10:50:08.068871Z INF saved file=data/000/000/000/000/000/000/000/0-operations-d17d5b941aec3c100a43e2c228bca4134473bb9c78dcf567bdd8b9e12e5cc928.jsonld.gz height=0 module=command-block-download
2021-06-08T10:50:08.12423Z INF saved file=data/000/000/000/000/000/000/000/0-operations_tree-45aff89f7084384fdecfac9689b75168a33f03bf6ba677ad085a6ac8fdf2bd12.jsonld.gz height=0 module=command-block-download
2021-06-08T10:50:08.130027Z INF saved file=data/000/000/000/000/000/000/0_1/-1-operations_tree-d0c45c5292593853052aba6d3f410c93f6cc4473e7873ded2d623069adfc0025.jsonld.gz height=-1 module=command-block-download
2021-06-08T10:50:08.162735Z INF saved file=data/000/000/000/000/000/000/000/0-states-73ac164e67fb49877b132aaaae2f7adf92cc237ef0e63db30f3013c283fb7100.jsonld.gz height=0 module=command-block-download
2021-06-08T10:50:08.172536Z INF saved file=data/000/000/000/000/000/000/0_1/-1-states-0fedf0c3ccb08aea5694e04a382ca04fb1338dfc9c2c408fe6296c93c0931124.jsonld.gz height=-1 module=command-block-download
2021-06-08T10:50:08.215233Z INF saved file=data/000/000/000/000/000/000/000/0-states_tree-7155e9c9f393943429f9341f22cba749203eaa2effd51bbbdb9b97c899cac62e.jsonld.gz height=0 module=command-block-download
2021-06-08T10:50:08.217385Z INF saved file=data/000/000/000/000/000/000/0_1/-1-states_tree-d0c45c5292593853052aba6d3f410c93f6cc4473e7873ded2d623069adfc0025.jsonld.gz height=-1 module=command-block-download
2021-06-08T10:50:08.278019Z INF saved file=data/000/000/000/000/000/000/000/0-init_voteproof-dab53369d715fc74ad750d95f1ceb859d62009165a76ea3368399da2b16bf4d7.jsonld.gz height=0 module=command-block-download
2021-06-08T10:50:08.287794Z INF saved file=data/000/000/000/000/000/000/0_1/-1-init_voteproof-812c550f7595c4c949d2255217a343864bdd878b09d124235d7db07758620bc7.jsonld.gz height=-1 module=command-block-download
2021-06-08T10:50:08.319642Z INF saved file=data/000/000/000/000/000/000/000/0-accept_voteproof-09fd08050476a5d0a343154aaa0325809d721004b49cba303a58300b7415235e.jsonld.gz height=0 module=command-block-download
2021-06-08T10:50:08.334284Z INF saved file=data/000/000/000/000/000/000/0_1/-1-accept_voteproof-812c550f7595c4c949d2255217a343864bdd878b09d124235d7db07758620bc7.jsonld.gz height=-1 module=command-block-download
2021-06-08T10:50:08.399426Z INF saved file=data/000/000/000/000/000/000/000/0-suffrage_info-038aa59ed7db04c96d11405336c7a2d1cb8ad6df5a18d66f8f3bf2919c6767f8.jsonld.gz height=0 module=command-block-download
2021-06-08T10:50:08.591648Z INF saved file=data/000/000/000/000/000/000/0_1/-1-suffrage_info-038aa59ed7db04c96d11405336c7a2d1cb8ad6df5a18d66f8f3bf2919c6767f8.jsonld.gz height=-1 module=command-block-download
2021-06-08T10:50:08.613875Z INF saved file=data/000/000/000/000/000/000/000/0-proposal-81c03f9c912591796ae5f3dbaab85bc91d7ca4031413787abb3068c5efa78360.jsonld.gz height=0 module=command-block-download
2021-06-08T10:50:08.750795Z INF saved file=data/000/000/000/000/000/000/0_1/-1-proposal-812c550f7595c4c949d2255217a343864bdd878b09d124235d7db07758620bc7.jsonld.gz height=-1 module=command-block-download

map

The download map command is used for downloading the blockdata map.

See Block Data for details.

$./mitum storage download map --node=https://localhost:54321 <height> ...

EXAMPLE

$./mitum storage download map --tls-insecure --node=https://127.0.0.1:54321 0 --pretty
{
 "_hint": "base-blockdatamap-v0.0.1",
 "hash": "DvYK11jZ8KWafAGPssypdNMRwwXwJJTKeyzTAx4JNnwc",
 "height": 10,
 "block": "AnjD39fpP6cJKVhnSfJxPfQ8sxrVwCrKhm1zWjb38dUS",
 "created_at": "2021-06-10T06:37:42.251Z",
 "items": {
 "accept_voteproof": {
 "type": "accept_voteproof",
 "checksum": "03dd3c2ce852729ff52ec7dcd31a2a1532656fbcea12a28438c3e84c8146c753",
 "url": "file:///000/000/000/000/000/000/010/10-accept_voteproof-03dd3c2ce852729ff52ec7dcd31a2a1532656fbcea12a28438c3e84c8146c753.jsonld.gz"
 },
 "init_voteproof": {
 "type": "init_voteproof",
 "checksum": "70d59dc3e84ddd06d319e9d38d68a976b09a816fbe5a5fdef42f5b80908b0fa0",
 "url": "file:///000/000/000/000/000/000/010/10-init_voteproof-70d59dc3e84ddd06d319e9d38d68a976b09a816fbe5a5fdef42f5b80908b0fa0.jsonld.gz"
 },
 "states": {
 "type": "states",
 "checksum": "d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59",
 "url": "file:///000/000/000/000/000/000/010/10-states-d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59.jsonld.gz"
 },
 "proposal": {
 "type": "proposal",
 "checksum": "ccd31f6627aa3cc6e9768b318f8cfd8e7f371b907f329fb89d692c7aea2ef465",
 "url": "file:///000/000/000/000/000/000/010/10-proposal-ccd31f6627aa3cc6e9768b318f8cfd8e7f371b907f329fb89d692c7aea2ef465.jsonld.gz"
 },
 "suffrage_info": {
 "type": "suffrage_info",
 "checksum": "f8955c57fb4a7dc48e71973af01852008c76ae4bb5487f8d6fccebcc10e5412e",
 "url": "file:///000/000/000/000/000/000/010/10-suffrage_info-f8955c57fb4a7dc48e71973af01852008c76ae4bb5487f8d6fccebcc10e5412e.jsonld.gz"
 },
 "manifest": {
 "type": "manifest",
 "checksum": "1f21552b0d7a11c0397c7429849a0f611d9681f70cecd5165e21fcbd5276a880",
 "url": "file:///000/000/000/000/000/000/010/10-manifest-1f21552b0d7a11c0397c7429849a0f611d9681f70cecd5165e21fcbd5276a880.jsonld.gz"
 },
 "operations": {
 "type": "operations",
 "checksum": "d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59",
 "url": "file:///000/000/000/000/000/000/010/10-operations-d890f3ba40375a6b2d331883907dc0a9ca980ce45f7d5dcaca9087278c0b6d59.jsonld.gz"
 },
 "states_tree": {
 "type": "states_tree",
 "checksum": "1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26",
 "url": "file:///000/000/000/000/000/000/010/10-states_tree-1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26.jsonld.gz"
 },
 "operations_tree": {
 "type": "operations_tree",
 "checksum": "1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26",
 "url": "file:///000/000/000/000/000/000/010/10-operations_tree-1f9877aebf8854fd42154c6e6479ff6a3e379b2762c65995c80f3dff2a357a26.jsonld.gz"
 }
 },
 "writer": "blockdata-writer-v0.0.1"
}

verify-blockdata

The verify-blockdata command is used for verifying blockdata in local storage.

$./mitum storage verify-blockdata <blockdata path>

EXAMPLE

$./mitum storage verify-blockdata data --network-id=mitum --verbose
2021-06-08T10:52:03.249204Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/cmd.go:86 > maxprocs: Leaving GOMAXPROCS=8: CPU quota undefined module=command-blockdata-verify
2021-06-08T10:52:03.250015Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/cmd.go:95 > flags parsed flags={"CPUProf":"mitum-cpu.pprof","EnableProfiling":false,"LogColor":false,"LogFile":null,"LogFormat":"terminal","LogLevel":"info","LogOutput":{},"MemProf":"mitum-mem.pprof","NetworkID":"bWl0dW0=","Path":"data","TraceProf":"mitum-trace.pprof","Verbose":true} module=command-blockdata-verify
2021-06-08T10:52:03.250188Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:38 > trying to verify blockdata module=command-blockdata-verify path=data
2021-06-08T10:52:03.250315Z INF ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:107 > last height found last_height=5 module=command-blockdata-verify
2021-06-08T10:52:03.250607Z INF ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/verify_storage.go:53 > checking manifests module=command-blockdata-verify
2021-06-08T10:52:03.255675Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/verify_storage.go:109 > manifests loaded heights=[-1,6] module=command-blockdata-verify
2021-06-08T10:52:03.255766Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/verify_storage.go:121 > manifests checked heights=[-1,6] module=command-blockdata-verify
2021-06-08T10:52:03.258293Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:257 > block data files checked height=0 module=command-blockdata-verify
2021-06-08T10:52:03.257947Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:257 > block data files checked height=1 module=command-blockdata-verify
2021-06-08T10:52:03.259131Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:257 > block data files checked height=4 module=command-blockdata-verify
2021-06-08T10:52:03.257772Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:257 > block data files checked height=5 module=command-blockdata-verify
2021-06-08T10:52:03.260384Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:257 > block data files checked height=2 module=command-blockdata-verify
2021-06-08T10:52:03.260419Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:257 > block data files checked height=-1 module=command-blockdata-verify
2021-06-08T10:52:03.260606Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:257 > block data files checked height=3 module=command-blockdata-verify
2021-06-08T10:52:03.274069Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:187 > block checked height=-1 module=command-blockdata-verify
2021-06-08T10:52:03.279165Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:187 > block checked height=3 module=command-blockdata-verify
2021-06-08T10:52:03.279179Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:187 > block checked height=2 module=command-blockdata-verify
2021-06-08T10:52:03.279223Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:187 > block checked height=1 module=command-blockdata-verify
2021-06-08T10:52:03.279267Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:187 > block checked height=4 module=command-blockdata-verify
2021-06-08T10:52:03.279344Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:187 > block checked height=5 module=command-blockdata-verify
2021-06-08T10:52:03.281481Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:187 > block checked height=0 module=command-blockdata-verify
2021-06-08T10:52:03.281569Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/blockdata_verify.go:87 > blockdata verified module=command-blockdata-verify
.....

verify-database

The verify-database command is used for verifying the database by comparing it with the block data.

$./mitum storage verify-database <database uri> <blockdata path>

EXAMPLE

$./mitum storage verify-database mongodb://127.0.0.1:27017/n0_mc blockfs --network-id=mitum --verbose
2021-06-08T10:56:20.879671Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/cmd.go:86 > maxprocs: Leaving GOMAXPROCS=8: CPU quota undefined module=command-database-verify
2021-06-08T10:56:20.879921Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/cmd.go:95 > flags parsed flags={"CPUProf":"mitum-cpu.pprof","EnableProfiling":false,"LogColor":false,"LogFile":null,"LogFormat":"terminal","LogLevel":"info","LogOutput":{},"MemProf":"mitum-mem.pprof","NetworkID":"bWl0dW0=","Path":"data","TraceProf":"mitum-trace.pprof","URI":"mongodb://127.0.0.1:27017/mc","Verbose":true} module=command-database-verify
2021-06-08T10:56:20.880018Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/pm/processes.go:310 > processed from_process= module=process-manager process=init
2021-06-08T10:56:20.880066Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/pm/processes.go:310 > processed from_process=time-syncer module=process-manager process=config
2021-06-08T10:56:21.038454Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/util/localtime/time_sync.go:67 > started interval=120000 module=time-syncer server=time.google.com
2021-06-08T10:56:21.042330408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/pm/processes.go:310 > processed from_process=init module=process-manager process=time-syncer
2021-06-08T10:56:21.042835408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/pm/processes.go:359 > hook processed from=encoders hook=add_hinters module=process-manager
2021-06-08T10:56:21.042884408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/pm/processes.go:310 > processed from_process=init module=process-manager process=encoders
2021-06-08T10:56:21.203404408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/pm/processes.go:310 > processed from_process=init module=process-manager process=database
2021-06-08T10:56:21.203608408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/pm/processes.go:359 > hook processed from=blockdata hook=check_blockdata_path module=process-manager
2021-06-08T10:56:21.203899408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/database_verify.go:207 > block found block={"hash":"CzF6t6ePyBaz6RnSjw6YRhwKsxA5sRnhHwQJvK8xVgMR","height":0,"round":0} module=command-database-verify
2021-06-08T10:56:21.204001408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/pm/processes.go:359 > hook processed from=blockdata hook=check_storage module=process-manager
2021-06-08T10:56:21.204054408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/pm/processes.go:310 > processed from_process=init module=process-manager process=blockdata
2021-06-08T10:56:21.204357408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/database_verify.go:74 > trying to verify database module=command-database-verify path=data uri=mongodb://127.0.0.1:27017/mc
2021-06-08T10:56:21.204424408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/database_verify.go:100 > verifying database module=command-database-verify
2021-06-08T10:56:21.204941408Z INF ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/verify_storage.go:53 > checking manifests module=command-database-verify
2021-06-08T10:56:21.210215408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/verify_storage.go:109 > manifests loaded heights=[-1,1] module=command-database-verify
2021-06-08T10:56:21.210355408Z DBG ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/verify_storage.go:121 > manifests checked heights=[-1,1] module=command-database-verify
2021-06-08T10:56:21.210456408Z INF ../../../../pkg/mod/github.com/spikeekips/mitum@v0.0.0-20210605063447-f720096b150d/launch/cmds/database_verify.go:105 > database verified module=command-database-verify

clean

The clean command is used for cleaning blockdata and database.

$./mitum storage clean <node design file>

EXAMPLE

$./mitum storage clean node.yml

clean-by-height

The clean-by-height command is used for cleaning blockdata and database above a specific height.

$./mitum storage clean-by-height <node design file> <height>

EXAMPLE

$./mitum storage clean-by-height node.yml 54234

restore

The restore command is used for restoring the entire database from the downloaded blockdata.

When you use the restore command, both blockdata and data used for digest API are created. Check if the network id in the settings of the yml file is the same as the network id of the downloaded node.

	Multiple blockdata can be recovered simultaneously with the –concurrency option.

	If you want to delete and restore the existing mongodb data, use –clean.

	Use –dryrun to only check blockdata without actually recovering it.

	If you specify a specific blockdata directory with the –one option, you can recover them one by one.

$./mitum storage restore <node design file>

EXAMPLE

$./mitum storage restore node.yml --concurrency 10
2021-06-08T11:00:34.304594Z INF prepare to run module=command-restore
2021-06-08T11:00:34.304656Z INF prepared module=command-restore
2021-06-08T11:00:34.743477729Z INF block restored height=-1 module=command-restore
2021-06-08T11:00:34.828859729Z INF block restored height=0 module=command-restore
2021-06-08T11:00:34.829060729Z INF restored module=command-restore
2021-06-08T11:00:35.833206729Z INF stopped module=command-restore

set-blockdatamaps

The set-blockdatamaps command is used for updating multiple BlockDataMaps.

See Block Data for details.

$./mitum storage set-blockdatamaps <deploy key> <maps file> [<node url>]

Deploy

Execute the deploy key command to create and manage the node’s deploy key.

The subcommands related to deploy key command are as follows.

	new

	keys

	key

	revoke

Note

What is deploy key?

Updates of nodes (such as changing the BlockDataMap) should be allowed only by the node owner.
The node owner uses the key to prove himself when managing the node.

However, it is dangerous to directly use a node’s private key for node management.
Thus, we need a replaceable and manageable key that can be used for things like node management.

deploy key is used for this purpose.

new

The new command is used for creating and registering a new deploy key to the node.

$./mitum deploy key new <private key of node> <network-id> [<node url>]

EXAMPLE

$ NODE_PRV_KEY=KxaTHDAQnmFeWWik5MqWXBYkhvp5EpWbsZzXeHDdTDb5NE1dVw8wmpr

$ NODE=https://127.0.0.1:54321

$ NETWORK_ID=mitum

$./mitum deploy key new $NODE_PRV_KEY $NETWORK_ID $NODE --tls-insecure
{"key":"d-fc4179e7-2ff3-4372-bd83-f70526bed476","added_at":"2021-06-09T09:31:22.321675852Z"}
2021-06-09T09:31:22.320055Z INF new deploy key module=command-deploy-key-new

keys

The keys command is used for obtaining the list of registered deploy keys in the node.

$./mitum deploy key keys <private key of node> <network-id> [<node url>]

EXAMPLE

$ NODE_PRV_KEY=KxaTHDAQnmFeWWik5MqWXBYkhvp5EpWbsZzXeHDdTDb5NE1dVw8wmpr

$ NODE=https://127.0.0.1:54321

$ NETWORK_ID=mitum

$./mitum deploy key keys $NODE_PRV_KEY $NETWORK_ID $NODE --tls-insecure
[{"key":"d-974702df-89a7-4fd1-a742-2d66c1ead6cd","added_at":"2021-06-09T03:14:33.9Z"},{"key":"d-2897ced4-ceb5-4e11-be81-3139350c9c55","added_at":"2021-06-09T03:56:49.393Z"},{"key":"d-fc4179e7-2ff3-4372-bd83-f70526bed476","added_at":"2021-06-09T09:31:22.321675852Z"}]

key

The key command is used for checking the existence of the deploy key in the node.

$./mitum deploy key key <deploy key> <private key of node> <network-id> [<node url>]

EXAMPLE

$ NODE_PRV_KEY=KxaTHDAQnmFeWWik5MqWXBYkhvp5EpWbsZzXeHDdTDb5NE1dVw8wmpr

$ NODE=https://127.0.0.1:54321

$ NETWORK_ID=mitum

$ DEPLOY_KEY=d-974702df-89a7-4fd1-a742-2d66c1ead6cd

$./mitum deploy key key $DEPLOY_KEY $NODE_PRV_KEY $NETWORK_ID $NODE --tls-insecure
{"key":"d-974702df-89a7-4fd1-a742-2d66c1ead6cd","added_at":"2021-06-09T03:14:33.9Z"}

revoke

The revoke command is used for revoking the deploy key from the node.

$./mitum deploy key revoke <deploy key> <private key of node> <network-id> [<node url>]

EXAMPLE

$ NODE_PRV_KEY=KxaTHDAQnmFeWWik5MqWXBYkhvp5EpWbsZzXeHDdTDb5NE1dVw8wmpr

$ NODE=https://127.0.0.1:54321

$ NETWORK_ID=mitum

$ DEPLOY_KEY=d-974702df-89a7-4fd1-a742-2d66c1ead6cd

$./mitum deploy key revoke $DEPLOY_KEY $NODE_PRV_KEY $NETWORK_ID $NODE --tls-insecure
2021-06-09T09:36:19.763339Z INF deploy key revoked deploy_key=d-974702df-89a7-4fd1-a742-2d66c1ead6cd module=command-deploy-key-revoke

version

Check the version of the installed Mitum Currency using the version command.

$./mitum version

EXAMPLE

$./mitum version
v0.0.1

quic-client

Note that the response of quic-client is identical to the response when requesting node info by API.

$./mitum quic-client <node-url>

EXAMPLE

$./mitum quic-client https://3.35.171.179:54321/
{
 "_hint": "node-info-v0.0.1",
 "node": {
 "_hint": "base-node-v0.0.1",
 "address": "node4sas",
 "publickey": "21im86HvT3aC4p23AExN7PKRD3RF1GR8cD3E95iEJHhNKmpu"
 },
 "network_id": "bWl0dW0=",
 "state": "CONSENSUS",
 "last_block": {
 "_hint": "block-manifest-v0.0.1",
 "hash": "GBQqKbR6pAs8gWzNmf5mrHGUYUmjs829NVX4WuYz7uzf",
 "height": 994024,
 "round": 0,
 "proposal": "HbxL38mNX8NGTqErNE3Hw5w639qKpbEwC4SkkCDZvrYB",
 "previous_block": "5rPQHEunbAw15YG3GaZneYKQpxsKRgQuThW6Yd7KBZb",
 "block_operations": null,
 "block_states": null,
 "confirmed_at": "2022-01-19T05:58:14.623577286Z",
 "created_at": "2022-01-19T05:58:14.631963244Z"
 },
 "version": "v0.0.1-stable-383cf0c-20211224",
 "policy": {
 "timespan_valid_ballot": 60000000000,
 "network_connection_timeout": 3000000000,
 "threshold": 100,
 "max_operations_in_seal": 10,
 "max_operations_in_proposal": 100,
 "interval_broadcasting_proposal": 1000000000,
 "wait_broadcasting_accept_ballot": 1000000000,
 "timeout_waiting_proposal": 5000000000,
 "interval_broadcasting_init_ballot": 1000000000,
 "interval_broadcasting_accept_ballot": 1000000000,
 "suffrage": "{\"type\":\"\",\"cache_size\":10,\"number_of_acting\":1}"
 },
 "suffrage": [
 {
 "address": "node4sas",
 "publickey": "21im86HvT3aC4p23AExN7PKRD3RF1GR8cD3E95iEJHhNKmpu",
 "conninfo": {
 "_hint": "http-conninfo-v0.0.1",
 "url": "https://3.35.171.179:54321",
 "insecure": true
 }
 }
],
 "conninfo": {
 "_hint": "http-conninfo-v0.0.1",
 "url": "https://3.35.171.179:54321",
 "insecure": true
 }
}

Operation Execution

seal

The seal command helps execute various operations contained in the seal.

The subcommands related to signature generation and transmission are as follows.

	send

	sign

	sign-fact

In addition, the seal command has a subcommand that generates an operation for each model.

Whether the operation has been successfully processed or not can be checked through the api.

For more information, please refer to Confirming the Success of the Operation.

send

The send command is used for sending a seal.

$./mitum seal send <sender privatekey> --network-id=<network id> --seal=<data file path> --node=<node https url>

Operations are transmitted in units of seals.

Signature is required to transmit the seal. Refer to Seal for the part related to the keypair used for signature generation.

EXAMPLE

data.json is a seal file written in json.

$ NETWORK_ID="mitum"

$ NODE="https://127.0.0.1:54321"

$ AC0_PRV=L1jPsE8Sjo5QerUHJUZNRqdH1ctxTWzc1ue8Zp2mtpieNwtCKsNZmpr

$./mitum seal send --network-id=$NETWORK_ID $AC0_PRV --seal=data.json --node=$NODE jq -R '. as $line | try fromjson catch $line'
{
 "_hint": "seal-v0.0.1",
 "hash": "6nLRWj5hGQ7va9gxpAJCBxNDKvgFnms9jaa913uWgsx1",
 "body_hash": "32ZEf8V9fV41JHVWbbqQdYWtrw5T255XN8fSXhBAhGFD",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "381yXZ4LFY5HnK211gpG3W22V52vMLqix4SysXEeMnqcXUk5eEYGM1JfFaX5UE86EF6qog5jUScPqZo6UkiaAFocUhwtSsjx",
 "signed_at": "2021-06-10T09:17:51.236729Z",
 "operations": [
 {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "7YvcA6WAcKEag1Z4Jv1bQ2wYxAZix5sNB6u8MUXDM44D",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "3equMRJAVHk8WdVanffzEWkHfwnBDqF2cFwmmcv8MzDW",
 "token": "MjAyMS0wNi0xMFQwOToxNzo1MS4yMDgwOTVa",
 "sender": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100000",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "AN1rKvtPEX4MRu6kWRYDJ6WtsSnwxwJsYXiVi2Qujx8sF6SJzsZZKj7anCd9cmUZ175FSYLkkWkpDRj3fVgZFDxLFSnos3szz",
 "signed_at": "2021-06-10T09:17:51.211816Z"
 }
],
 "memo": ""
 }
]
}
2021-06-10T09:17:51.240066Z INF trying to send seal module=command-send-seal
2021-06-10T09:17:51.345243Z INF sent seal module=command-send-seal

When sending to a local node for testing, an error may occur related to tls authentication.

In this case, give the option –tls-insecure=true when sending seals.

$./mitum seal send --network-id=$NETWORK_ID $AC0_PRV --tls-insecure=true --seal=data.json --node=$NODE

sign

The sign command is used for creating a signature for a seal.

$./mitum seal sign --network-id=NETWORK-ID-FLAG <privatekey>

EXAMPLE

Before using the sign command, prepare a file containing a seal with operations. The file should be saved in json format for signature generation.

For example,

{
 "_hint": "seal-v0.0.1",
 "hash": "5W39B2mmtc4KK9THiRdoF6F5UMZPSxjzedPePojVhqyV",
 "body_hash": "5yGtCzJiPRRbZkeLawQev4dvdYgYuKHXe6TP6x2VLSt4",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "381yXZHsyzbc8qTD7BJgmGoM8ncSrUcyDZiSNanARp9h84tvcj6HkGXzpFyck9arJTCQDmPGzT5UFq1coHv7wijusgynSfgr",
 "signed_at": "2021-06-10T06:50:26.903245Z",
 "operations": [
 {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "9mFHaqd66pv7RjoAbKScUucJLKW7KVSkWqN1WXnzMrxQ",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "3CpL1MgD1TPejUmVxPKSgiUu6LCR7FhFrDehSjSogavZ",
 "token": "MjAyMS0wNi0xMFQwNjo1MDoyNi44NzQyNzVa",
 "sender": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "Dut3WiprEo1BRcx2xRvh6qbBgxaTLXQDris7SihDTET8",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "27tMvbSpajF1VSnrn3xRQESpPAsmA7KZEfUz9ZuTZEemumpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100000",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvtfRrgY15owfURsNyfWnYtZ7syuRafWa637tkWB1HyxDCD2tWZUhySTg6mnZWQKpP3i6Dmf96fw9TUWb8rrbsetHJciH",
 "signed_at": "2021-06-10T06:50:26.877954Z"
 }
],
 "memo": ""
 }
]
}

Run seal sign with this json file.

Then, you can get a seal with a new seal signature, as shown in the following.

$ SIGNER_PRV=KxmWM4Zj5Ln8bbDwVZEKrYQY8N51Uk3UVq5GNQAeb2KW8JqHmsgmmpr
$./mitum seal sign --seal=data.json --network-id=mitum $SIGNER_PRV | jq
{
 "_hint": "seal-v0.0.1",
 "hash": "5dLCySkPrFtc8SnbjzELBK5GR7VQocrK7cXswEnhEa1S",
 "body_hash": "3Ah7J2q4HhFXSgV3c4EQWeZtpi1nFY7be2nmL4X6qDxa",
 "signer": "224ekkhrax6EpekzfLTv9See1hNDZW3LAjWBRuzTMpgnrmpu",
 "signature": "AN1rKvtFhZfDzyLLXtK3PtZ8P1jSTqZy6gC8WooBjWRhzwLrXjCcVTeo4juzdMg83he2emJ3SVkCNZssiB1pTtAPtx753P5CT",
 "signed_at": "2021-06-10T07:12:41.992205Z",
 "operations": [
 {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "9mFHaqd66pv7RjoAbKScUucJLKW7KVSkWqN1WXnzMrxQ",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "3CpL1MgD1TPejUmVxPKSgiUu6LCR7FhFrDehSjSogavZ",
 "token": "MjAyMS0wNi0xMFQwNjo1MDoyNi44NzQyNzVa",
 "sender": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "Dut3WiprEo1BRcx2xRvh6qbBgxaTLXQDris7SihDTET8",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "27tMvbSpajF1VSnrn3xRQESpPAsmA7KZEfUz9ZuTZEemumpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100000",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvtfRrgY15owfURsNyfWnYtZ7syuRafWa637tkWB1HyxDCD2tWZUhySTg6mnZWQKpP3i6Dmf96fw9TUWb8rrbsetHJciH",
 "signed_at": "2021-06-10T06:50:26.877954Z"
 }
],
 "memo": ""
 }
]
}

sign-fact

The sign-fact command is used for creating signatures for operation facts.

This command is used to add a fact signature to the operation contained in the seal. You must pass the seal data containing the operation to this command.

This command is mainly used when an operation is created by an account with multi sig or when signing multiple nodes is required, such as in currency registration.

$./mitum seal sign-fact --network-id=NETWORK-ID-FLAG <privatekey>

EXAMPLE

Here is an example where a seal contains a transfer operation for transferring tokens from the multi sig account. It requires two fact signatures, but only has one.

{
 "_hint": "seal-v0.0.1",
 "hash": "CgFaHkJEP966xRQjzPtXBUwzqgQYWB53RHwjBqyvmKHs",
 "body_hash": "Akjx1kJZKzyYMo2eVbqcUvtEfivDEGsK4yeUUuNwbGmu",
 "signer": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "signature": "381yXZ8qZBYQXDBaGr1KyAcsMJyB9HZLo1aQQRsxhx854aMYm5n7nh3NXzsJHpEhiYHgWUYnCtbAZaVsQ8pe6nEnLaHCXizY",
 "signed_at": "2021-06-10T09:54:35.868873Z",
 "operations": [
 {
 "hash": "Eep8SJH7Vkqft3BcvKYd9NY14Zgzmhyp7Uts2GmpaS5N",
 "fact": {
 "_hint": "mitum-currency-transfers-operation-fact-v0.0.1",
 "hash": "Eu1b4gr528Xy4u2sg97DsEo5uj9BuQEMjHzJxdsLgH48",
 "token": "MjAyMS0wNi0xMFQwOTo1NDozNS44NjQwOTha",
 "sender": "FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 "items": [
 {
 "_hint": "mitum-currency-transfers-item-single-amount-v0.0.1",
 "receiver": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "signature": "AN1rKvtZFkx5e4NexvBSjjJkuzUj45UKau8DL2JZx5d1htnbnkmPmHnNbgwqfvUnz8KHpUR72Z9YxD4JVQhdh4JCzGv9zMDDG",
 "signed_at": "2021-06-10T09:54:35.868223Z"
 }
],
 "memo": "",
 "_hint": "mitum-currency-transfers-operation-v0.0.1"
 }
]
}

After using sign-fact to add a fact signature, the above json becomes,

$ SIGNER1_PUB_KEY=2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu
$ SIGNER2_PUB_KEY=sdjgo1jJ2kxAxMyBj6qZDb8okZpwzHYE8ZACgePYW4eTmpu
$ SIGNER2_PRV_KEY=L5AAoEqwnHCp7WfkPcUmtUX61ppZQww345rEDCwB33jVPud4hzKJmpr
$ NETWORK_ID=mitum
$./mitum seal sign-fact $SIGNER2_PRV_KEY --seal data.json --network-id=$NETWORK_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "GiADUurx7qVwyeu8XUNQgmNpqmtN9UDzockhLNKXzYN6",
 "body_hash": "Ci7yzpahGtXqpWs3EGfoqnmUhTgbRhdkgb2GupsJRvgB",
 "signer": "sdjgo1jJ2kxAxMyBj6qZDb8okZpwzHYE8ZACgePYW4eTmpu",
 "signature": "381yXYnDDMYrZ4asLpAYgD7AHDAGMsVih11S3V2jCwNdvJJxeA96whPnth4DxXoJ3RiK8vBpvVKRvXJsPpDpZZ2GMagAmaBi",
 "signed_at": "2021-06-10T10:01:27.690429Z",
 "operations": [
 {
 "_hint": "mitum-currency-transfers-operation-v0.0.1",
 "hash": "AduowWC9mHTCeRp8aqN4dQxHjKGH8xdm8vqxcMj7SfUZ",
 "fact": {
 "_hint": "mitum-currency-transfers-operation-fact-v0.0.1",
 "hash": "Eu1b4gr528Xy4u2sg97DsEo5uj9BuQEMjHzJxdsLgH48",
 "token": "MjAyMS0wNi0xMFQwOTo1NDozNS44NjQwOTha",
 "sender": "FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 "items": [
 {
 "_hint": "mitum-currency-transfers-item-single-amount-v0.0.1",
 "receiver": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "signature": "AN1rKvtZFkx5e4NexvBSjjJkuzUj45UKau8DL2JZx5d1htnbnkmPmHnNbgwqfvUnz8KHpUR72Z9YxD4JVQhdh4JCzGv9zMDDG",
 "signed_at": "2021-06-10T09:54:35.868223Z"
 },
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "sdjgo1jJ2kxAxMyBj6qZDb8okZpwzHYE8ZACgePYW4eTmpu",
 "signature": "381yXZ9yqzCSzUZZUuQvU3ZMHgM9Pa5MQUo2hKGhPFW4ZuMCC3eK2iGYvx3gwQD3LCfELuUXejAQiMmeKaNAEoZVPDf1gpkE",
 "signed_at": "2021-06-10T10:01:27.690034Z"
 }
],
 "memo": ""
 }
]
}

Go to the appropriate page to see the seal commands supported by each model.

	currency

	currency-extension

	document

	feefi

	nft

Operation Generation

Each model can generate the following operations.

For generation, you must use seal.

$./mitum seal <operation name> ...

currency

This model supports the following operation generation commands:

	Operations for Currency

	currency-register

	Register new currency id

	currency-policy-updater

	Update currency policy

	suffrage-infration

	Increase amount of tokens

	Operations for Account

	create-account

	Create new account

	key-updater

	Update account keys

	transfer

	Transfer amount of tokens

	create-account

	key-updater

	transfer

	currency-register

	currency-policy-updater

	suffrage-inflation

create-account

The create-account command is used for creating an account.

$./mitum seal create-account --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency,amount> --key=KEY@... --threshold=THRESHOLD

	KEY: <pub key, weight>

EXAMPLE

We will proceed with the process of creating two accounts, ac0 and ac1 as an example.

For how to create a keypair, please refer to key.

The operation that creates account ac0 is as follows.

	Create Single Sig Account

We will create the account according to the following account information.

sender's account - who create new account
private key: L5GTSKkRs9NPsXwYgACZdodNUJqCAWjz2BccuR4cAgxJumEZWjokmpr
address: Gu5xHjhos5WkjGo9jKmYMY7dwWWzbEGdQCs11QkyAhh8mca

ac0
public key - weight: cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu - 100
threshold: 100
initial balance: 500 MCC

$ NETWORK_ID="mitum"

$ SENDER_PRV=L5GTSKkRs9NPsXwYgACZdodNUJqCAWjz2BccuR4cAgxJumEZWjokmpr

$ SENDER_ADDR=Gu5xHjhos5WkjGo9jKmYMY7dwWWzbEGdQCs11QkyAhh8mca

$ AC0_PUB=cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu

$./mitum seal create-account --network-id=$NETWORK_ID $SENDER_PRV $SENDER_ADDR MCC,500 --key=$AC0_PUB,100 --threshold=100 --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "Xr7HS7rnbfxTrNbr6qRJ64on6KFuMzvJf5Z6BGqVZsX",
 "body_hash": "EJ93htxhUh2edJhBujMCHhpvGGHQoBic8KQ7VzggxKw1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "381yXZUffVp3gmKD2WJA6756SeDy16d3PF6Ym15HBL89rs1YhT1cW4zVnWD17mhBdhfhutu3848GPd9zTMDqUFmkE8rUWmCs",
 "signed_at": "2021-06-10T14:06:17.60152Z",
 "operations": [
 {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "8ezjZDuC44U2ZFPDkebMyLEYNQBPUUnRjHyfSTeQs9gk",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "F1o51xXWnnQYUVV6JA44beJeKKxuJi3Tv8DzvREodHhA",
 "token": "MjAyMS0wNi0xMFQxNDowNjoxNy41OTczMDNa",
 "sender": "Gu5xHjhos5WkjGo9jKmYMY7dwWWzbEGdQCs11QkyAhh8mca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLu",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "500",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "381yXYyRo91cqu5gFp5GtHWCiYmsssbFxx95MaL8gH4koBCZ5AfnRqYEpWMxcxgKmeEWsRPVJ8zWytAMLiA9zQes9qGnbcj8",
 "signed_at": "2021-06-10T14:06:17.601089Z"
 }
],
 "memo": ""
 }
]
}

The above json messages are put in the seal and sent to the node.

	Create Multi Sig Account

Note

	In Mitum Currency, two or more operations signed by one account cannot be processed in one block.

	For example, two respective operations that send 5 amount from ac0 to ac1 and ac2 cannot be processed at the same time.

	In this case, only the operation that arrived first is processed and the rest are ignored.

Suppose that the sender is trying to create ac0 and ac1 at the same time using only one seal. Then the sender should include items for both ac0 and ac1.

This means that for the operation to be processed successfully, the sender should create and send only one operation that creates two accounts in the seal. Do not make multiple separate operations with the same sender.

sender's account - who create new account
private key: L5GTSKkRs9NPsXwYgACZdodNUJqCAWjz2BccuR4cAgxJumEZWjokmpr
address: Gu5xHjhos5WkjGo9jKmYMY7dwWWzbEGdQCs11QkyAhh8mca

ac0
public key - weight: cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu - 100
threshold: 100
initial balance: 50 MCC

ac1
public key - weight: sdjgo1jJ2kxAxMyBj6qZDb8okZpwzHYE8ZACgePYW4eTmpu - 100
threshold: 100
initial balance: 50 MCC

Then,

$ NETWORK_ID=mitum

$ NODE=https://127.0.0.1:54321

$ SENDER_PRV=L5GTSKkRs9NPsXwYgACZdodNUJqCAWjz2BccuR4cAgxJumEZWjokmpr

$ SENDER_ADDR=Gu5xHjhos5WkjGo9jKmYMY7dwWWzbEGdQCs11QkyAhh8mca

$ CURRENCY_ID=MCC

$ AC0_PUB=cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu

$ AC1_PUB=sdjgo1jJ2kxAxMyBj6qZDb8okZpwzHYE8ZACgePYW4eTmpu

$./mitum seal create-account --network-id=$NETWORK_ID \
 $SENDER_PRV $SENDER_ADDR $CURRENCY_ID,50 \
 --key=$AC0_PUB,100 |
 mitum seal create-account --network-id=$NETWORK_ID \
 $SENDER_PRV $SENDER_ADDR $CURRENCY_ID,50 \
 --key=$AC1_PUB,100 --seal=- | \
 mitum seal send --network-id="$NETWORK_ID" \
 $SENDER_PRV --seal=- --node=$NODE --tls-insecure | jq -R '. as $line | try fromjson catch $line'
{
 "_hint": "seal-v0.0.1",
 "hash": "HV1tT3D639TiYe6bmamXtesvNjAN8tJ7AmgmeB6STrwz",
 "body_hash": "Gg5KQzzNPAt5PiLrcE5kjMbd4jB7Vk4ooBmN81yWDqYv",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "381yXZ1szjaYdxsznCpSvg19yS1tKUw1yPmgXBX6Ehf5ZcKNaMCRkJ8PaNS34rUwLSZ88EPh8vFq1FfRncHiTfo1v9adHCSH",
 "signed_at": "2021-06-10T15:01:13.080144Z",
 "operations": [
 {
 "memo": "",
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "AhqQMGZHDCeJDp74aQJ8rEXMC6GgQtpxP3rXnjjP41ui",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "3fDBD1i6V5VpGxB1di6JGgMPhyWZeWRML8FX4LnYXqJE",
 "token": "MjAyMS0wNi0xMFQxNTowMToxMy4wNDA0OTZa",
 "sender": "Gu5xHjhos5WkjGo9jKmYMY7dwWWzbEGdQCs11QkyAhh8mca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLu",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "50",
 "currency": "MCC"
 }
]
 },
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "EuCb6BVafkV1tBLsrMqkxojkanJCM4bvmG6JFUZ4s7XL",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "sdjgo1jJ2kxAxMyBj6qZDb8okZpwzHYE8ZACgePYW4eTmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "50",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvthtCymTu7gv2fSrMhGwqVuK3o24FrDe6GGLzRU8N5SWF62nPs3iKcEjuzwHya6P9JmrNLRF95ri8QTE4NBc66TxhCHm",
 "signed_at": "2021-06-10T15:01:13.053303Z"
 }
]
 }
]
}
"2021-06-10T15:01:13.083634Z INF trying to send seal module=command-send-seal"
"2021-06-10T15:01:13.171266Z INF sent seal module=command-send-seal"

transfer

The transfer command is used for transferring tokens between accounts.

$./mitum seal transfer --network-id=NETWORK-ID-FLAG <privatekey> <sender> <receiver> <currency,amount> ...

EXAMPLE

This is an example of transferring the currency 10 MCC tokens from ac0 to ac1.

$ AC0_PRV=KzUYFHNzxvUnZfm1ePJJ4gnLcLtMv1Tvod7Fib2sRuFmGwzm1GVbmpr

$ AC0_ADDR=FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca

$ AC1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ CURRENCY_ID=MCC

$ NETWORK_ID="mitum"

$./mitum seal transfer --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $AC1_ADDR $CURRENCY_ID,10 --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "EJDzHbusvvcknN9NWaK1wjuvSTav2TVfnDmtRnqVjEVn",
 "body_hash": "FWLTyQePguo6CFxH8SgEHesoLL8ab3FofEw9nXHDDLMp",
 "signer": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "signature": "381yXZMbRqwMgfWwJNk4rWNuaJenJMHZU3HBufz7Uo4Yj3zo944oeJeGoKjUDyCJXuL4pZLt49gqW2FHV3YuB5zBR24h96ZH",
 "signed_at": "2021-06-14T03:42:11.969679Z",
 "operations": [
 {
 "_hint": "mitum-currency-transfers-operation-v0.0.1",
 "hash": "F3WZYRgcwwYENiVXx6J6zKPqkiDjSZcuF2vUUPiyR3n9",
 "fact": {
 "_hint": "mitum-currency-transfers-operation-fact-v0.0.1",
 "hash": "7xzioXfnkKU1qrFvgeWK1KrhR71RMHMSBZdpWRVK3MUD",
 "token": "MjAyMS0wNi0xNFQwMzo0MjoxMS45NjUyNjNa",
 "sender": "FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 "items": [
 {
 "_hint": "mitum-currency-transfers-item-single-amount-v0.0.1",
 "receiver": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "10",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "signature": "AN1rKvtRQeMWcFQ9oPLqgakgW33fed4mCcxxfQwi3icWLyn19AKJ3XpYehA8njvAi7qzgGSVpv23JXBDcXbwiZvQkHBj6T8jw",
 "signed_at": "2021-06-14T03:42:11.96891Z"
 }
],
 "memo": ""
 }
]
}

key-updater

The key-updater command is used for updating the account keys.

Updating account keys to new public keys does not change the address.

$./mitum seal key-updater --network-id=NETWORK-ID-FLAG <privatekey> <target> <currency> --key=KEY@... --threshold=THRESHOLD

	KEY: <pub key, weight>

For more information about account keys, refer to Multi Sig Account.

EXAMPLE

This is an example of key-updater. The example shows updating keys of ac0 to another one.

ac0 - target account
private key: KzUYFHNzxvUnZfm1ePJJ4gnLcLtMv1Tvod7Fib2sRuFmGwzm1GVbmpr
public key: 2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu
address: FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca

ac1 - new key
public key: 247KCJyus9NYJii9rkT4R3z6GxengcwYQHwRKA6DySbiUmpu

$ NETWORK_ID="mitum"

$ NODE=https://127.0.0.1:54321

$ AC0_PRV=KzUYFHNzxvUnZfm1ePJJ4gnLcLtMv1Tvod7Fib2sRuFmGwzm1GVbmpr

$ AC0_PUB=2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu

$ AC0_ADDR=FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca

$ AC1_PUB=247KCJyus9NYJii9rkT4R3z6GxengcwYQHwRKA6DySbiUmpu

$ CURRENCY_ID=MCC

$./mitum seal key-updater --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR --key $AC1_PUB,100 $CURRENCY_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "GvuGxKCTKWqXzgzxk3iWVGkSPAMn1nBNbAu7qgzHB8y6",
 "body_hash": "8gyB4eE7yQvneA463ZnM8LEWKDCthm8mKEFcfvAmk2pg",
 "signer": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "signature": "381yXZWCaZy3G5VLse9NCBMmJg8bPWoY4rmyAWMTRVjLKZP9WkexgJfN8EP4G2P64MPchFKtsYZ2QsNyu31rrjKQN4THtEtz",
 "signed_at": "2021-06-14T03:45:21.821896Z",
 "operations": [
 {
 "_hint": "mitum-currency-keyupdater-operation-v0.0.1",
 "hash": "4fFKpjDBmSrka3C3Q62fz5JYGZstZmkQTe27vgyNj4A9",
 "fact": {
 "_hint": "mitum-currency-keyupdater-operation-fact-v0.0.1",
 "hash": "5yaMz2aSKS5H1wtd4YVcU4q5awbaxu7bhhswX3ss8XCb",
 "token": "MjAyMS0wNi0xNFQwMzo0NToyMS44MTczNjNa",
 "target": "FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GmUiuEbsoTVLSirRWMZ2WcxT69enhEXNfskAnRJby8he",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "247KCJyus9NYJii9rkT4R3z6GxengcwYQHwRKA6DySbiUmpu"
 }
],
 "threshold": 100
 },
 "currency": "MCC"
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "signature": "AN1rKvtPv6CuiW36Q4g1wtmsGNy2Fc3ierpHgfnjXjdqjDE3wvSH293FVDYy9Yf9VTNadfMGJ38WC39hthZuGkau3vBGq7ijP",
 "signed_at": "2021-06-14T03:45:21.821399Z"
 }
],
 "memo": ""
 }
]
}

If you want to send the operation right away,

$./mitum seal key-updater --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR \
 --key $AC1_PUB,100" $CURRENCY_ID \
 | mitum seal send --network-id=$NETWORK_ID \
 $AC0_PRV --seal=- --node=$NODE --tls-insecure

Also, you can check whether the account keys have really changed.

$ find blockfs -name "*-states-*" -print | sort -g | xargs -n 1 gzcat | grep '^{' | jq '. | select(.key == "'$AC0_ACC_KEY'") | ["height: "+(.height|tostring), "state_key: " + .key, "key.publickey: " + .value.value.keys.keys[0].key, "key.weight: " + (.value.value.keys.keys[0].weight|tostring), "threshold: " + (.value.value.keys.threshold|tostring)]'
[
 "height: 3",
 "state_key: GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623-mca:account",
 "key.publickey: 2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "key.weight: 100",
 "threshold: 100"
]
[
 "height: 104",
 "state_key: GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623-mca:account",
 "key.publickey: 247KCJyus9NYJii9rkT4R3z6GxengcwYQHwRKA6DySbiUmpu",
 "key.weight: 100",
 "threshold: 100"
]

currency-register

The currency-register command is used for registering a new currency token.

$./mitum seal currency-register --network-id=NETWORK-ID-FLAG --feeer=STRING <privatekey> <currency-id> <genesis-amount> <genesis-account>

When registering a new currency, the items that need to be set are as follows.

	genesis account: account where the issued token will be registered with new currency registration

	genesis amount: amount of newly issued tokens

	–policy-new-account-min-balance=<amount> must be set.

	feeer: The feeer can be selected from three policies; {nil, fixed, ratio}.

	nil is a case where there is no fee payment.

	fixed is a case where a fixed amount is paid.

	ratio is a case where a payment is made in proportion to the operation amount.

	If the fee policy is fixed, you must set –feeer-fixed-receiver=<fee receiver account address> and –feeer-fixed-amount=<fee amount> accordingly.

	If the fee policy is ratio, then –feeer-ratio-receiver=<fee receiver account address> and –feeer-ratio-ratio=<fee ratio, multifly by operation amount>,`` –feeer-ratio-min=<minimum fee>``,`` –feeer-ratio-max=<maximum fee>`` must be set.

When registering a new currency, the signature of the suffrage nodes participating in consensus must exceed the consensus threshold (67%) to be executed.

EXAMPLE

Suppose that we are going to register a new currency MCC2 with the following conditions.

genesis-account : ac1
genesis-amount : 9999999999999
currency-id : MCC2
feeer : fixed
feeer-fixed-receiver : ac1
feeer-fixed-amount : 3
seal sender : ac1
suffrage node : n0, n1, n2, n3

Then,

$ NETWORK_ID="mitum"

$ AC1_ADDR="HWXPq5mBSneSsQis6BbrNT6nvpkafuBqE6F2vgaTYfAC-a000:0.0.1"

$ AC1_PRV="792c971c801a8e45745938946a85b1089e61c1cdc310cf61370568bf260a29be-0114:0.0.1"

$ N0_PRV=<n0 private key>

$ N1_PRV=<n1 private key>

$ N2_PRV=<n2 private key>

$ N3_PRV=<n3 private key>

$./mitum seal currency-register --network-id=$NETWORK_ID --feeer=fixed --feeer-fixed-receiver=$AC1_ADDR \
 --feeer-fixed-amount=3 --policy-new-account-min-balance=10 $N0_PRV MCC2 9999999999999 $AC1_ADDR \
 | mitum seal sign-fact $N1_PRV --network-id="$NETWORK_ID" --seal=- \
 | mitum seal sign-fact $N2_PRV --network-id="$NETWORK_ID" --seal=- \
 | mitum seal sign-fact $N3_PRV --network-id="$NETWORK_ID" --seal=- \
 | mitum seal send --network-id="$NETWORK_ID" $AC1_PRV --seal=-

Each currency has a zero account for deposit only that is used to burn tokens. The zero account is deposit only because the public key is not registered.

The address of the zero account has the same format as <currency id>-Xmca. For example, the zero account address of PEN currency is PEN-Xmca.

$ curl --insecure http://localhost:54320/account/PEN-Xmca | jq
{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-account-value-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-account-value-v0.0.1",
 "hash": "EJvkxncxfVQNncdKZtjQTH2XuT5ECRiqSZA7LLE14zqi",
 "address": "PEN-Xmca",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "",
 "keys": [],
 "threshold": 0
 },
 "balance": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100000000000000000000000000",
 "currency": "PEN"
 }
],
 "height": 41,
 "previous_height": 0
 },
 "_links": {
 "block": {
 "href": "/block/41"
 },
 "previous_block": {
 "href": "/block/0"
 },
 "self": {
 "href": "/account/PEN-Xmca"
 },
 "operations": {
 "href": "/account/PEN-Xmca/operations"
 },
 "operations:{offset}": {
 "href": "/account/PEN-Xmca/operations?offset={offset}",
 "templated": true
 },
 "operations:{offset,reverse}": {
 "templated": true,
 "href": "/account/PEN-Xmca/operations?offset={offset}&reverse=1"
 }
 }
}

currency-policy-updater

The currency-policy-updater command is used for updating the currency-related policy.

$./mitum seal currency-policy-updater --network-id=NETWORK-ID-FLAG --feeer=STRING <privatekey> <currency-id>

First, get the info of the registered currency through API.

When updating a currency policy, the signature of the suffrage nodes participating in consensus must exceed the consensus threshold (67%) to be executed.

$ curl --insecure -v https://localhost:54320/currency/MCC2 | jq
{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-currency-design-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-currency-design-v0.0.1",
 "amount": {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "9999999999999",
 "currency": "MCC2"
 },
 "genesis_account": "FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 "policy": {
 "_hint": "mitum-currency-currency-policy-v0.0.1",
 "new_account_min_balance": "10",
 "feeer": {
 "_hint": "mitum-currency-fixed-feeer-v0.0.1",
 "type": "fixed",
 "receiver": "FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 "amount": "3"
 }
 }
 },
 "_links": {
 "self": {
 "href": "/currency/MCC2"
 },
 "currency:{currencyid}": {
 "templated": true,
 "href": "/currency/{currencyid:.*}"
 },
 "block": {
 "href": "/block/10"
 },
 "operations": {
 "href": "/block/operation/goNANpmA1BcnXA6TVL6AKkoxsmiaT2F5ss5zoSh7Wdt"
 }
 }
}

The policy that can be changed through currency-policy-updater is the fee-related policy and the minimum balance value when creating a new account.

EXAMPLE

Suppose that we are going to update policy for MCC2 according to the following conditions.

currency-id : MCC2

Policy to be updated
- feeer : ratio
- feeer-ratio-receiver : ac1
- feeer-ratio-ratio : 0.5
- feeer-ratio-min : 3
- feeer-ratio-max : 1000
- policy-new-account-min-balance : 100

suffrage node : n0, n1, n2, n3

Then,

$ NETWORK_ID="mitum"

$ AC1_ADDR="HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca"

$ AC0_PRV="KzUYFHNzxvUnZfm1ePJJ4gnLcLtMv1Tvod7Fib2sRuFmGwzm1GVbmpr"

$ N0_PRV=<n0 private key>

$ N1_PRV=<n1 private key>

$ N2_PRV=<n2 private key>

$ N3_PRV=<n3 private key>

$./mitum seal currency-policy-updater --network-id=$NETWORK_ID --feeer="ratio" --feeer-ratio-receiver=$AC1_ADDR \
 --feeer-ratio-ratio=0.5 --feeer-ratio-min=3 --feeer-ratio-max=1000 --policy-new-account-min-balance=100 $N0_PRV MCC2 \
 | mitum seal sign-fact $N1_PRV --network-id=$NETWORK_ID --seal=- \
 | mitum seal sign-fact $N2_PRV --network-id=$NETWORK_ID --seal=- \
 | mitum seal sign-fact $N3_PRV --network-id=$NETWORK_ID --seal=- \
 | mitum seal send --network-id=$NETWORK_ID $AC0_PRV --seal=-

Check,

$ curl --insecure https://localhost:54320/currency/MCC2 | jq
{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-currency-design-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-currency-design-v0.0.1",
 "amount": {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "9999999999999",
 "currency": "MCC2"
 },
 "genesis_account": "FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 "policy": {
 "_hint": "mitum-currency-currency-policy-v0.0.1",
 "new_account_min_balance": "100",
 "feeer": {
 "_hint": "mitum-currency-ratio-feeer-v0.0.1",
 "type": "ratio",
 "receiver": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "ratio": 0.5,
 "min": "3",
 "max": "1000"
 }
 }
 },
 "_links": {
 "currency:{currencyid}": {
 "href": "/currency/{currencyid:.*}",
 "templated": true
 },
 "block": {
 "href": "/block/13"
 },
 "operations": {
 "href": "/block/operation/3HxC5VP5Fjzent7uVVLsK44i1tp8ooH4f2Vh4c4uWM4e"
 },
 "self": {
 "href": "/currency/MCC2"
 }
 }
}

suffrage-inflation

The suffrage-inflation command is used for inflating the supply of an existing currency token.

$./mitum seal suffrage-inflation --network-id=NETWORK-ID-FLAG <privatekey> <inflation item> ...

	inflation item: <receiver-account>,<currency-id>,<inflation-amount>

There are two processes of registering a currency in Mitum Currency.

	Through initial genesis currency generation

	By registering a new currency while the network is alive

The registered currency has a total supply amount. The Mitum Currency may increase the amount of tokens in addition to the total supply amount.

When generating new amounts, the items that need to be set are as follows.

	receiver-account which receives account of additionally generated tokens.

When inflating a currency, the signature of the suffrage nodes participating in consensus must exceed the consensus threshold (67%) to be executed.

EXAMPLE

We are going to inflate the supply of MCC according to the following conditions.

operation-sender-account : ac1
receiver-account : ac2
inflation-amount : 9999999999999
currency-id : MCC
seal sender : ac1
suffrage node : n0, n1, n2, n3

Then,

$ NETWORK_ID="mitum"

$ AC1_PRV="L2Q4PqxrhgS39jgGoXsV92LaCHRF2SqTLRwMhCC6Q6in9Vb19aDLmpr"

$ AC2_ADDR="HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca"

$ N0_PRV=<n0 private key>

$ N1_PRV=<n1 private key>

$ N2_PRV=<n2 private key>

$ N3_PRV=<n3 private key>

$./mitum seal suffrage-inflation --network-id=$NETWORK_ID $N0_PRV MCC 9999999999999 $AC2_ADDR \
 | mitum seal sign-fact $N1_PRV --network-id=$NETWORK_ID --seal=- \
 | mitum seal sign-fact $N2_PRV --network-id=$NETWORK_ID --seal=- \
 | mitum seal sign-fact $N3_PRV --network-id=$NETWORK_ID --seal=- \
 | mitum seal send --network-id=$NETWORK_ID $AC1_PRV --seal=-

currency-extension

This model supports the following operation generation commands:

	Operations for Contract Account

	create-contract-account

	Create new contract account

	withdraw

	Withdraw tokens from contract account

	create-contract-account

	withdraw

create-contract-account

The create-contract-account command is used for creating an account.

$./mitum seal create-contract-account --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency,amount> --key=KEY@... --threshold=THRESHOLD

	KEY: <pub key, weight>

The contract account address generation method is typically the same as create-account.

However, the contract account cannot be an operation sender because it does not have public keys after it is created.

EXAMPLE

The following example creates an operation that creates a new contract account.

$ NETWORK_ID=mitum

$ NODE=https://127.0.0.1:54321

$ SENDER_PRV=L5GTSKkRs9NPsXwYgACZdodNUJqCAWjz2BccuR4cAgxJumEZWjokmpr

$ SENDER_ADDR=Gu5xHjhos5WkjGo9jKmYMY7dwWWzbEGdQCs11QkyAhh8mca

$ CURRENCY_ID=MCC

$ CA_PUB=cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu

$./mitum seal create-contract-account --network-id=$NETWORK_ID $SENDER_PRV $SENDER_ADDR $CURRENCY_ID,50 --key=$CA_PUB,100 --threshold=100 --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "FesvoWab1rxiqThwa3NcatCYQjmsAHVdW3jhjgAvNUeH",
 "body_hash": "7VP1MkTMShuMkTFaVZ5NQfSc4znE8fBdBDJqNVpz9AQY",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "381yXZ35xwEQHrx29K9gxEByxCEfNjq4kk2RAc9R1pHxFvsb3ipBj6YATbcibNGmt9Qmjfk37Pj1dXEhUpxgpsAiomhiLdev",
 "signed_at": "2022-09-22T05:10:53.613948Z",
 "operations": [
 {
 "_hint": "mitum-currency-create-contract-accounts-operation-v0.0.1",
 "hash": "9CGe19v8J2vgtDzYYwrYDmdvSXuoDitRMW5yCLmt1wHS",
 "fact": {
 "_hint": "mitum-currency-create-contract-accounts-operation-fact-v0.0.1",
 "hash": "3TdxxmTqL8azYWT7jXJ964YsSVhd4D3fZbfK1a5Mcait",
 "token": "MjAyMi0wOS0yMlQwNToxMDo1My42MTM4Wg==",
 "sender": "Gu5xHjhos5WkjGo9jKmYMY7dwWWzbEGdQCs11QkyAhh8mca",
 "items": [
 {
 "_hint": "mitum-currency-create-contract-accounts-multiple-amounts-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLu",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "50",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvtLiUW7aMuUjm2VAgfprbHBZebQyhpJYHbSGG3wXVKe3w73LZQ59DE8tRVQkepDqiENZbU8GQyHQ7Jb9U8n7A3v9BZv6",
 "signed_at": "2022-09-22T05:10:53.613936Z"
 }
],
 "memo": ""
 }
]
}

withdraw

The withdraw command is used to withdraw tokens from the contract account.

$./mitum seal withdraw --network-id=NETWORK-ID-FLAG <privatekey> <sender> <target> <currency-amount> ...

EXAMPLE

This is an example of withdrawing the currency 10 MCC tokens from ca0.

$ AC0_PRV=KzUYFHNzxvUnZfm1ePJJ4gnLcLtMv1Tvod7Fib2sRuFmGwzm1GVbmpr

$ AC0_ADDR=FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca

$ CA1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ CURRENCY_ID=MCC

$ NETWORK_ID="mitum"

$./mitum seal withdraw --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CA1_ADDR $CURRENCY_ID,10 --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "3Cqw2bKvqRRscAT6DqACM9B4qtQPKi3nkSWV9emssvLH",
 "body_hash": "8onqhQvFNYTvAu5XeYpSx6GD1o6ybAoUsDR7bBs1M7NH",
 "signer": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "signature": "381yXZ4NQCLLjLbkc8oN3ZuDUt5Vix9QToVKRB5dyKsiWMyVZXA2EgvkX6fpsURdfuxLddj8yMD1JQWLLnB8xjjVHxr4FgqD",
 "signed_at": "2022-09-22T05:21:21.784792Z",
 "operations": [
 {
 "hash": "5GUZ7nCx1V1Dc4MW28cX3N59wqjjJ9DFWZ3aPUKHDuSe",
 "fact": {
 "_hint": "mitum-currency-contract-account-withdraw-operation-fact-v0.0.1",
 "hash": "J3mNeqrZwSSQZGorvXxDaAC2L88uF3akWDNnvQZzgCNP",
 "token": "MjAyMi0wOS0yMlQwNToyMToyMS43ODQ1OTha",
 "sender": "FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 "items": [
 {
 "_hint": "mitum-currency-withdraws-item-multi-amounts-v0.0.1",
 "target": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "10",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu",
 "signature": "381yXZHAgjXqDFJ38277rQFt8MamuhQCRdbqMuVah1TNYFEVg2cLihXCJBrGeUNzUiPpsGwAeHh2zaJG3mtKdc9VmJVU3dbF",
 "signed_at": "2022-09-22T05:21:21.78478Z"
 }
],
 "memo": "",
 "_hint": "mitum-currency-contract-account-withdraw-operation-v0.0.1"
 }
]
}

document

This model supports the following operation generation commands:

	Operations for Document

	create-document

	Create new document

	update-document

	Update the registered document

	sign-document

	Sign the registered document

	create-document

	update-document

	sign-document

In fact, in order to create a document using cli, you must use the appropriate command for each document type, not just create-document.

The document type is divided into blockcity and blocksign, and each command is as follows.

For blockcity,

	document create-blockcity-user-document

	document create-blockcity-land-document

	document create-blockcity-voting-document

	document create-blockcity-history-document

	document update-blockcity-user-document

	document update-blockcity-land-document

	document update-blockcity-voting-document

	document update-blockcity-history-document

For blocksign,

	document create-blocksign-document

	sign-document

Also, there is a document id suffix corresponding to each document type.

For blockcity,

	user doc: cui

	land doc: cli

	voting doc: cvi

	history doc: chi

For blocksign,

	blocksign doc: sdi

create-document

The create-document command is used for creating an document.

Use the appropriate command for each document type.

The commands for each document type are as follows:

	create-blockcity-user-document

	create-blockcity-land-document

	create-blockcity-voting-document

	create-blockcity-history-document

	create-blocksign-document

$./mitum seal document <document-type-command> --network-id=NETWORK-ID-FLAG <privatekey> <sender> ...

EXAMPLE

For example, the process for creating a blocksign document is as follows:

ac0 - sender account
private key:KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr
address:BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca
sign_code: signcode0

target document
title: example_doc
file hash: 8y8eHdmPsxZZGPFrKaYaHCQnDvcVmCAgB1XsNm7KGSxF
size: 1245
document id: exampledocsdi

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ CURRENCY_ID=MCC

$ NETWORK_ID="mitum"

$ FILE_HASH=8y8eHdmPsxZZGPFrKaYaHCQnDvcVmCAgB1XsNm7KGSxF

$ SIGN_CODE=signcode0

$ TITLE=example_doc

$ SIZE=1245

$ DOCUMENT_ID=exampledocsdi

$./mitum seal document create-blocksign-document --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $FILE_HASH $SIGN_CODE $DOCUMENT_ID $TITLE $SIZE $CURRENCY_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "GF4e4c8Xxvhb5YFwEzXoZi4nV3XjkyPf4dQpu8VAbeEH",
 "body_hash": "43nopiEfz3Rjad1j9jvAjf36kbqw4Nwj6QKBL5vkymhD",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvtaa6uDhZLd6okWV7PcEyDNoeVGDewMxfXSoBPiVj5pjkhT1nr3C5RWtF9B8YpGijSaZgKDR2HvozuLVAQhhn4h6dfmK",
 "signed_at": "2022-09-27T07:50:31.80218Z",
 "operations": [
 {
 "fact": {
 "_hint": "mitum-create-documents-operation-fact-v0.0.1",
 "hash": "69n9wHdnhowxPUu3ufZLPfZecnssDeky8wTykWq3M2Xj",
 "token": "MjAyMi0wOS0yN1QwNzo1MDozMS44MDE5MTha",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "items": [
 {
 "_hint": "mitum-create-documents-item-v0.0.1",
 "doc": {
 "_hint": "mitum-blocksign-document-data-v0.0.1",
 "info": {
 "_hint": "mitum-document-info-v0.0.1",
 "docid": {
 "_hint": "mitum-document-id-v0.0.1",
 "id": "exampledocsdi"
 },
 "doctype": "mitum-blocksign-document-data"
 },
 "owner": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "filehash": "8y8eHdmPsxZZGPFrKaYaHCQnDvcVmCAgB1XsNm7KGSxF",
 "creator": {
 "_hint": "mitum-blocksign-docsign-v0.0.1",
 "address": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "signcode": "signcode0",
 "signed": true
 },
 "title": "example_doc",
 "size": "1245",
 "signers": null
 },
 "currency": "MCC"
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZVwDoasGFrT2TgcqrZ2JmzW31BZWpeAPaeePHdREhavsbuSoVYHM1va5etWXXeMeBwLp94WJ17iYtM2JjjkUkfnzq8e",
 "signed_at": "2022-09-27T07:50:31.80216Z"
 }
],
 "memo": "",
 "_hint": "mitum-create-documents-operation-v0.0.1",
 "hash": "AhwPxKWk9oRym6YwKQGRRqnxZQpSTY8i2RqZRZgPRTyM"
 }
]
}

update-document

The update-document command is used for updating documents.

Use the appropriate command for each document type.

The commands for each document type are as follows:

	update-blockcity-user-document

	update-blockcity-land-document

	update-blockcity-voting-document

	update-blockcity-history-document

At this time, the blocksign-document cannot be updated.

$./mitum seal document <document-type-command> --network-id=NETWORK-ID-FLAG <privatekey> <sender> ...

EXAMPLE

For example, the process for updating a blockcity-user document is as follows:

ac0 - sender account
private key:KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr
address:BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

target document
document id: user0cui
gold/bankgold: 10, 10
hp/strength/agility/dexterity/charisma/intelligence/vital: 1, 1, 1, 1, 1, 1, 1

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ CURRENCY_ID=MCC

$ NETWORK_ID="mitum"

$ DOCUMENT_ID=user0cui

$./mitum seal document update-blockcity-user-document --network-id=mitum $AC0_PRV $AC0_ADDR 10 10 1 1 1 1 1 1 1 $DOCUMENT_ID $CURRENCY_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "5sddZRj6t3PZkgzz7LE3DzxtJmJwEp2BWiLiLQiZ9jHt",
 "body_hash": "4RMhiUA7d2izpkiJFp3VWF8bpQnNVwgrgGWYGgaHvHCu",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvtnLuJ82DMvBs8D7RQPfLPJDNhHjxdgDozs6B7eWmeQpAm1t4EESx2RZPV9RQ4m7zaPMunG9L3dQWigWCMHquPZuECFC",
 "signed_at": "2022-09-27T08:17:52.012673Z",
 "operations": [
 {
 "memo": "",
 "_hint": "mitum-update-documents-operation-v0.0.1",
 "hash": "6DDHb7aTMbYMr4zmorLcuBaucgppQ5tgw34RqjjWJju8",
 "fact": {
 "_hint": "mitum-update-documents-operation-fact-v0.0.1",
 "hash": "Gf1uoLeSCg3n176iPvhqsmXF61PMqar4D7DK3ko2iZjY",
 "token": "MjAyMi0wOS0yN1QwODoxNzo1Mi4wMTI0MTla",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "items": [
 {
 "_hint": "mitum-update-documents-item-v0.0.1",
 "doc": {
 "_hint": "mitum-blockcity-document-user-data-v0.0.1",
 "info": {
 "_hint": "mitum-document-info-v0.0.1",
 "docid": {
 "_hint": "mitum-blockcity-user-document-id-v0.0.1",
 "id": "user0cui"
 },
 "doctype": "mitum-blockcity-document-user-data"
 },
 "owner": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "gold": 10,
 "bankgold": 10,
 "statistics": {
 "_hint": "mitum-blockcity-user-statistics-v0.0.1",
 "hp": 1,
 "strength": 1,
 "agility": 1,
 "dexterity": 1,
 "charisma": 1,
 "intelligence": 1,
 "vital": 1
 }
 },
 "currency": "MCC"
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZLrGDmhoL5htvF2qwjX4TXssgms5opqmXAgC2BybG47DG5Y2ZW5r57S1WT6qh2dXx6PY6d2DFZxhfnAWCpD1d79Btvz",
 "signed_at": "2022-09-27T08:17:52.012653Z"
 }
]
 }
]
}

sign-document

The sign-document command is used for signing documents.

At this time, the blockcity-document cannot be signed.

$./mitum seal sign-document --network-id=NETWORK-ID-FLAG <privatekey> <sender> <documentid> <owner> <currency>

EXAMPLE

For example, the process for signing a blocksign document is as follows:

ac0 - signer account
private key:KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr
address:BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

ac1 - owner account
address: J1MbU4AaYnkGtvTJ2i8VpoPBY2rqP8GXqetQ41T8ZQKamca

$ NETWORK_ID="mitum"

$ AC0_PRV=KzUYFHNzxvUnZfm1ePJJ4gnLcLtMv1Tvod7Fib2sRuFmGwzm1GVbmpr

$ AC0_ADDR=FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca

$ AC1_ADDR=J1MbU4AaYnkGtvTJ2i8VpoPBY2rqP8GXqetQ41T8ZQKamca

$ CURRENCY_ID=MCC

$ DOCUMENT_ID=exampledocsdi

$./mitum seal sign-document --network-id=mitum $AC0_PRV $AC0_ADDR $DOCUMENT_ID $AC1_ADDR $CURRENCY_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "3FuuEGb7C8SmYEQC2Ykv3DmNc91CC1JHacTzt5dv6fCK",
 "body_hash": "DWh3hCPjz3BKxLAAARRvLDKHrFpGsbrhayNyf5pkfoEk",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZ1bHmxG5xEzaLNtqbTo35zYamL5B3GyhbmKJiShEej4v56dW1D16meJAzSZxqmwoiY8YmHsxj6yYbT9ddsUmJEf5Sa1",
 "signed_at": "2022-09-27T08:32:18.78323Z",
 "operations": [
 {
 "hash": "12nBfHCUVvvsKn7AZjL6DuSub8fzppTWshtcEWhvoBeC",
 "fact": {
 "_hint": "mitum-blocksign-sign-documents-operation-fact-v0.0.1",
 "hash": "A7rP6Rxp4LqRpirYP5T6zcGNxePUp7gJ9C37JQzL7tte",
 "token": "MjAyMi0wOS0yN1QwODozMjoxOC43ODI5ODNa",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "items": [
 {
 "_hint": "mitum-blocksign-sign-item-single-document-v0.0.1",
 "documentid": "exampledocsdi",
 "owner": "J1MbU4AaYnkGtvTJ2i8VpoPBY2rqP8GXqetQ41T8ZQKamca",
 "currency": "MCC"
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZAiPWdPHkEK6yHUKoiLCENiZQn7i2uUEFJFc6G2sPJfxrVYw6Tps9sU6TFEKKx948VyrNACtYM8decamVjE4Y6ZuZU8",
 "signed_at": "2022-09-27T08:32:18.783211Z"
 }
],
 "memo": "",
 "_hint": "mitum-blocksign-sign-documents-operation-v0.0.1"
 }
]
}

feefi

This model supports the following operation generation commands:

	Operations for Feefi Pool

	pool-register

	Register new feefi pool

	pool-policy-updater

	Update pool policy

	pool-deposit

	Deposit tokens to pool

	pool-withdraw

	Withdraw tokens from pool

	pool-register

	pool-policy-updater

	deposit-pool

	withdraw-pool

pool-register

pool-register is a command to register a pool of new token pairs in the contract account.

In order to execute this command correctly, you must also prepare a contract account along with a general account.

$./mitum seal pool-register --network-id=NETWORK-ID-FLAG <privatekey> <sender> <pool> <feefipool-income-cid> <feefipool-outlay-cid> <initial-fee> <currency-id>

EXAMPLE

For example, the process for registering a new pool is as follows:

ac0: pool owner
ca1: target contract account
income cid: PEN
outlay cid: MCC
pool fee: 1000

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ CA1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ NETWORK_ID=mitum

$ INCOME_ID=PEN

$ OUTLAY_ID=MCC

$ CURRENCY_ID=PEN

$./mn seal pool-register --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CA1_ADDR $INCOME_ID $OUTLAY_ID 1000 $CURRENCY_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "CNF4tXBZYBN165R4TJBD9fU1eioSM6RkcpP4GXz8yWvg",
 "body_hash": "CmY9uTmSRdbA55vhUeQHfmTB9JoVXqxmDYMTLRJmGx9j",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZCkYhagFJf8cwNiU1x5C4G9pq6J7WKAaGLamd2ctdrKZ2Rmw76q48wFxRu28dmwtJjcoxdgGcRPzhxrHYrAnJcwnDiU",
 "signed_at": "2022-09-29T03:34:37.900423Z",
 "operations": [
 {
 "fact": {
 "_hint": "mitum-feefi-pool-register-operation-fact-v0.0.1",
 "hash": "64rjFMjZLMrUc5xzqUSSjZAA8wtdBLaEHfCLL5DmXZnX",
 "token": "MjAyMi0wOS0yOVQwMzozNDozNy44OTk4NTha",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "target": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "initialfee": "1000",
 "incomecid": "PEN",
 "outlaycid": "MCC",
 "currency": "PEN"
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZAFwTeKWD7USrhfrnEEkULmD2nFRuuGuU663STypsFoKBNPoffk7bExDFCStx7SU9uUgB6iWue8VU7a7XUFdSjWRKKn",
 "signed_at": "2022-09-29T03:34:37.90014Z"
 }
],
 "memo": "",
 "_hint": "mitum-feefi-pool-register-operation-v0.0.1",
 "hash": "EspLXHipsoVpsBg43hGyHjtPHxDxEXUph45ThrpKFcrL"
 }
]
}

pool-policy-updater

pool-policy-updater is literally a command to update a pool policy.

$./mitum seal pool-policy-updater --network-id=NETWORK-ID-FLAG <privatekey> <sender> <pool> <feefipool-income-cid> <feefipool-outlay-cid> <fee> <currency-id>

EXAMPLE

For example, the process of updating a policy in a pool is as follows:

ac0: pool owner
ca1: target contract account (pool)
income cid: PEN
outlay cid: MCC
pool fee: 1000

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ CA1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ NETWORK_ID=mitum

$ INCOME_ID=PEN

$ OUTLAY_ID=MCC

$ CURRENCY_ID=PEN

$./mn seal pool-policy-updater --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CA1_ADDR $INCOME_ID $OUTLAY_ID 100 $CURRENCY_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "2JifrJrATSeZ4DLR93SASMRfYPaBtzRDTKTDnMBo7n2o",
 "body_hash": "GTARF3Aa5N2udRryex6mrNQaFGo8PmTvE9jASZXzKJab",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXYtNVGfFErRKJptsxMyus1XZw7gfp4kbFKdUeruacsdWHmRaFzGVcVNunyNmj3GKsgqccSWvWg9vJWfWGCFcpPJFfKmA",
 "signed_at": "2022-09-29T03:43:37.455156Z",
 "operations": [
 {
 "_hint": "mitum-feefi-pool-policy-updater-operation-v0.0.1",
 "hash": "3HW64V3dkRVUvYHFt9p5aokKb3hThZvmZyDuHvFqCCzC",
 "fact": {
 "_hint": "mitum-feefi-pool-policy-updater-operation-fact-v0.0.1",
 "hash": "3rzZZYGHBpFAt4ERPCDbWcZpnLTfDUam9Squ5vwpmwMU",
 "token": "MjAyMi0wOS0yOVQwMzo0MzozNy40NTQ4MDda",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "target": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "fee": "100",
 "incomecid": "PEN",
 "outlaycid": "MCC",
 "currency": "PEN"
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZFzjsGsEWraLdWR3ypikpfBjZnPXwoetcnN1jiuzNCC8RVRbmzATeymQQzfdzg2NUHFV4s9B7MjSKZGH7DU8cZ9Eeaa",
 "signed_at": "2022-09-29T03:43:37.454903Z"
 }
],
 "memo": ""
 }
]
}

deposit-pool

deposit-pool is a command for depositing tokens into a pool.

$./mitum seal deposit-pool --network-id=NETWORK-ID-FLAG <privatekey> <sender> <pool-address> <income-cid> <outlay-cid> <currency-amount>

EXAMPLE

For example, the process of depositing tokens into a pool is as follows:

ac0: general account
ca1: target contract account (pool)
income cid: PEN
outlay cid: MCC
deposit amount: 1000

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ CA1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ NETWORK_ID=mitum

$ INCOME_ID=PEN

$ OUTLAY_ID=MCC

$./mn seal deposit-pool --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CA1_ADDR $INCOME_ID $OUTLAY_ID 1000 --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "62g4Lm6g5trSKMgX69h6x3uWVrecX5nxuSCDoRrZMDvN",
 "body_hash": "7Nre3WrUrbz34THfeD5sfxXYuNaQt15YEJUswfM2N2Kc",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvtcm39tLWjZvdero5eucr2rHN36UCKxuvjcJ2BFBVBEfD2szo8igaCRP5v8hQeM85zLPEtsTzmreVLjSRNRPYr7sBdAL",
 "signed_at": "2022-09-29T05:19:17.776578Z",
 "operations": [
 {
 "_hint": "mitum-feefi-pool-deposits-operation-v0.0.1",
 "hash": "BfnEsBGrCSvy16mPWBmuSHdphUwJJM4RZ22F6TBKQwmy",
 "fact": {
 "_hint": "mitum-feefi-pool-deposits-operation-fact-v0.0.1",
 "hash": "99UQkedTVajjdK3nvTaxpSyiWbqBXadzNagoQVVcmUcH",
 "token": "MjAyMi0wOS0yOVQwNToxOToxNy43NzY0Nlo=",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "pool": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "incomecid": "PEN",
 "outlaycid": "MCC",
 "amount": "1000"
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZUCwW43whDh8e2t1SEMt2Ug8CjQq2CfgJmuKRoNWZz4M2beUYNkJYR6mdemhjh8M7JNrTTedrWvuZnqkXnaHGxix2nZ",
 "signed_at": "2022-09-29T05:19:17.776566Z"
 }
],
 "memo": ""
 }
]
}

withdraw-pool

withdraw-pool is a command to withdraw tokens deposited in the pool.

$./mitum seal withdraw-pool --network-id=NETWORK-ID-FLAG <privatekey> <sender> <pool> <income-cid> <outlay-cid> <currency-amount> ...

EXAMPLE

For example, the process of withdrawing a token from a pool is as follows:

ac0: general account
ca1: target contract account (pool)
income cid: PEN
outlay cid: MCC
withdraw amount: PEN,1000

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ CA1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ NETWORK_ID=mitum

$ INCOME_ID=PEN

$ OUTLAY_ID=MCC

$./mn seal withdraw-pool --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CA1_ADDR $INCOME_ID $OUTLAY_ID $INCOME_ID,1000 --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "CH1UGmJXnFSrAvTb6gwUutXmDVveZanUVfaHawoanNDc",
 "body_hash": "52Hd9Cw6oQRCzuPB84P4BQ99oC8NcKJWrWuWnLrDLWte",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXYfZEv6t8nQUKsA2GEZ6Q23xy7YjHHSf41tv5xN4yuukXnErjrHQHjrniUhKKRmxnLFFfK98yNqgKarLNvHFFvpdhinA",
 "signed_at": "2022-09-29T05:26:19.42738Z",
 "operations": [
 {
 "_hint": "mitum-feefi-pool-withdraw-operation-v0.0.1",
 "hash": "2J6vKTXc4y5hSbw2XQYFLfzRoydRA5VA34DSKTDX9pWH",
 "fact": {
 "_hint": "mitum-feefi-pool-withdraw-operation-fact-v0.0.1",
 "hash": "7bmHTxhZieuGFo5LDg7dVjz1bcov5BWoZpvLVtU4ktb2",
 "token": "MjAyMi0wOS0yOVQwNToyNjoxOS40MjcyNTZa",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "pool": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "incomecid": "PEN",
 "outlaycid": "MCC",
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "1000",
 "currency": "PEN"
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZUfYx8mVMa8HQUqL6GiZn6xszPaxCSVg71vKgEPQvq5ZBH4oevwhtrAxcN2Wb5xYZeYtF8k54wbepTxYMg3YTXHyuHB",
 "signed_at": "2022-09-29T05:26:19.427363Z"
 }
],
 "memo": ""
 }
]
}

nft

This model supports the following operation generation commands:

	Operations for NFT Collection

	collection-register

	Register new nft collection

	collection-policy-updater

	Update nft collection

	Operations for NFT

	mint

	Mint new nft

	sign

	Sign nft as creator or copyrighter

	transfer

	Transfer nft

	burn

	Burn(Deactivate) nft

	Operations for Delegation of Authority

	delegate

	Delegation of authority to nfts of collection

	approve

	Delegation of authority to any one nft

	collection-register

	collection-policy-updater

	mint

	transfer-nft

	burn

	sign-nft

	delegate

	approve

collection-register

collection-register is a command for registering a new collection design in a contract account.

In order to execute this command correctly, you must also prepare a contract account along with a general account.

$./mitum seal collection-register --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency> <target> <symbol> <name> <royalty>

EXAMPLE

For example, the process of registering a collection design is as follows:

ac0: collection owner
ca1: target contract account
collection: Crazy Protocon / CPRT / https://protocon.io/api/collection/CPRT
collection royalty: 10
whitelist: [ac0]

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ CA1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ NETWORK_ID=mitum

$ CURRENCY_ID=PEN

$ COLLECTION_SYMBOL="CPRT"

$ COLLECTION_NAME="Crazy Protocon"

$ COLLECTION_URI=https://protocon.io/api/collection/CPRT

$./mn seal collection-register --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CURRENCY_ID $CA1_ADDR $COLLECTION_SYMBOL $COLLECTION_NAME 10 --white=$AC0_ADDR --uri=$COLLECTION_URI --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "5CQ1o3w8N8pDcYHzSDSkiZ7UwQohUDB16Vvuos6UqMna",
 "body_hash": "FCa3xzPeDeqnQex2JEFFXsMGx4SGsfCKWTJFEbvkeZev",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvtLv7bJDvNoQhWiafxhJf5vqz3fSuYbQ5zvajpVnKfcEcmBW1YpmuqS7JrZUmUaDhy6dH3gMirQVrTwpZxTR8qYiwV25",
 "signed_at": "2022-09-29T05:40:13.457989Z",
 "operations": [
 {
 "_hint": "mitum-nft-collection-register-operation-v0.0.1",
 "hash": "Dd7H7EMeXroow4GqJPUJpgzU8e37c28zBut9RigCrm9c",
 "fact": {
 "_hint": "mitum-nft-collection-register-operation-fact-v0.0.1",
 "hash": "FaFoitzYgXGxNcSqMvqnjaqe5csAjTS4STubM9xNZKJk",
 "token": "MjAyMi0wOS0yOVQwNTo0MDoxMy40NTc4NDFa",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "form": {
 "_hint": "mitum-nft-collection-register-form-v0.0.1",
 "target": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "symbol": "CPRT",
 "name": "Crazy Protocon",
 "royalty": 10,
 "uri": "https://protocon.io/api/collection/CPRT",
 "whites": [
 "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca"
]
 },
 "currency": "PEN"
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZ369TJvHz9SqgnPquJEhN6gLv5vLoxXem1hUKYkqJRh6qoKAPRsj1GVQm6YZn3HPegvHdnFqo1D1Qe7sR5eXdTVVqr3",
 "signed_at": "2022-09-29T05:40:13.457979Z"
 }
],
 "memo": ""
 }
]
}

collection-policy-updater

collection-policy-updater is a command to update the policy of the registered collection design.

$./mitum seal collection-register --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency> <target> <symbol> <name> <royalty>

EXAMPLE

For example, the process of registering a collection design is as follows:

ac0: collection owner
ca1: target contract account
collection: Crazy Protocon / CPRT / https://protocon.io/api/collection/CPRT
collection royalty: 10
whitelist: [ac0]

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ CA1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ NETWORK_ID=mitum

$ CURRENCY_ID=PEN

$ COLLECTION_SYMBOL="CPRT"

$ COLLECTION_NAME="Crazy Protocon"

$ COLLECTION_URI=https://protocon.io/api/collection/CPRT

$./mn seal collection-register --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CURRENCY_ID $CA1_ADDR $COLLECTION_SYMBOL $COLLECTION_NAME 10 --white=$AC0_ADDR --uri=$COLLECTION_URI --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "5CQ1o3w8N8pDcYHzSDSkiZ7UwQohUDB16Vvuos6UqMna",
 "body_hash": "FCa3xzPeDeqnQex2JEFFXsMGx4SGsfCKWTJFEbvkeZev",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvtLv7bJDvNoQhWiafxhJf5vqz3fSuYbQ5zvajpVnKfcEcmBW1YpmuqS7JrZUmUaDhy6dH3gMirQVrTwpZxTR8qYiwV25",
 "signed_at": "2022-09-29T05:40:13.457989Z",
 "operations": [
 {
 "_hint": "mitum-nft-collection-register-operation-v0.0.1",
 "hash": "Dd7H7EMeXroow4GqJPUJpgzU8e37c28zBut9RigCrm9c",
 "fact": {
 "_hint": "mitum-nft-collection-register-operation-fact-v0.0.1",
 "hash": "FaFoitzYgXGxNcSqMvqnjaqe5csAjTS4STubM9xNZKJk",
 "token": "MjAyMi0wOS0yOVQwNTo0MDoxMy40NTc4NDFa",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "form": {
 "_hint": "mitum-nft-collection-register-form-v0.0.1",
 "target": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "symbol": "CPRT",
 "name": "Crazy Protocon",
 "royalty": 10,
 "uri": "https://protocon.io/api/collection/CPRT",
 "whites": [
 "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca"
]
 },
 "currency": "PEN"
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZ369TJvHz9SqgnPquJEhN6gLv5vLoxXem1hUKYkqJRh6qoKAPRsj1GVQm6YZn3HPegvHdnFqo1D1Qe7sR5eXdTVVqr3",
 "signed_at": "2022-09-29T05:40:13.457979Z"
 }
],
 "memo": ""
 }
]
}

mint

mint is a command to mint nft to collection.

Only accounts registered in the whitelist of the collection can mint nfts to the collection.

$./mitum seal mint --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency> <collection> <hash> <uri>

EXAMPLE

For example, the process of minting nft is as follows:

ac0: whitelisted account
collection symbol: target collection
nft hash: 4nM1L2Z44YztaL
nft uri: https://protocon.io/api/nft/CPRT-00001
creator: ac0
copyrighter: none

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ NETWORK_ID=mitum

$ CURRENCY_ID=PEN

$ COLLECTION_SYMBOL=CPRT

$ NFT_HASH=4nM1L2Z44YztaL

$ NFT_URI=https://protocon.io/api/nft/CPRT-00001

$./mn seal mint --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CURRENCY_ID $COLLECTION_SYMBOL $NFT_HASH $NFT_URI --creator=$AC0_ADDR,100 --creator-total=100 --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "6RhSU1dnYuvT3VXbo7ihpeyE9jW89RZhq7WShWxUSH7S",
 "body_hash": "BQEXFyqkXYcd4N4FViHeNTFRRiP3M1nxLykFzBQn9pmx",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXYoAAhGbKADEwBbRx63JuER3Cp6zFXmHeiHiq4bLc9BvuCBBckAekDPQQghQ3TmBEsk2xebwoaSctJTgGK7iTuVnQR66",
 "signed_at": "2022-09-29T06:09:15.659013Z",
 "operations": [
 {
 "_hint": "mitum-nft-mint-operation-v0.0.1",
 "hash": "CMmCnrd8r7hoUgKRbvSNXhuA2nhpc9vvr3BXcQ3pWUm2",
 "fact": {
 "_hint": "mitum-nft-mint-operation-fact-v0.0.1",
 "hash": "2TkApoGoQ6ws886g7M92MWrrZcH39xkDBkuRDcT6vLdu",
 "token": "MjAyMi0wOS0yOVQwNjowOToxNS42NTg4NzVa",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "items": [
 {
 "_hint": "mitum-nft-mint-item-v0.0.1",
 "collection": "CPRT",
 "form": {
 "_hint": "mitum-nft-mint-form-v0.0.1",
 "hash": "4nM1L2Z44YztaL",
 "uri": "https://protocon.io/api/nft/CPRT-00001",
 "creators": {
 "_hint": "mitum-nft-signers-v0.0.1",
 "total": 100,
 "signers": [
 {
 "_hint": "mitum-nft-signer-v0.0.1",
 "account": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "share": 100,
 "signed": false
 }
]
 },
 "copyrighters": {
 "_hint": "mitum-nft-signers-v0.0.1",
 "total": 0,
 "signers": []
 }
 },
 "currency": "PEN"
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvtjKr13MgqBKC3VTEFL2QhUYU94zCLo3eshV1N9oGH1KxxrsMMGefuKJYZAbcsDBr2kV5HdMVjY1ThXbDsGV6Zwxdbtd",
 "signed_at": "2022-09-29T06:09:15.659002Z"
 }
],
 "memo": ""
 }
]
}

sign-nfts

sign-nfts is a command to sign as an account related to the minted nft.

The related account here refers to the creator and copywriter registered together when nft minting.

$./mitum seal sign-nfts --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency> <nft>

EXAMPLE

For example, the process of signing nft is as follows:

ac0: related account
target nft: CPRT-00001
option: creator

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ NETWORK_ID=mitum

$ CURRENCY_ID=PEN

$ NFT_ID=CPRT,00001

$./mn seal sign-nfts --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CURRENCY_ID $NFT_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "8PkkoofAguZsRc8pLfj7hX7GCeoQgDLDLdjfk8ZsViPF",
 "body_hash": "Fs8MKQs1gkoNLK8ZFMnAMko6PyMhpQ2Tk4EuS9fuh6Yr",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXYuqprX8pDANqerFniRf3yjhSxbBxxwxiYaYyjJLsD8QA33erAaMVZrRijx4er2deJdtRHguARzdCaoikPkdFSqE8d1w",
 "signed_at": "2022-09-29T06:18:03.485899Z",
 "operations": [
 {
 "_hint": "mitum-nft-sign-operation-v0.0.1",
 "hash": "5mSy9YJnSu6MAu69vBrFoGDveQcN4KqjbGFLa2E2mYSm",
 "fact": {
 "_hint": "mitum-nft-sign-operation-fact-v0.0.1",
 "hash": "ENR1r1vgDpRNUj7JioenAUtCbrRBphMDqK9yA7VFAUo4",
 "token": "MjAyMi0wOS0yOVQwNjoxODowMy40ODU3NzVa",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "items": [
 {
 "_hint": "mitum-nft-sign-item-v0.0.1",
 "qualification": "creator",
 "nft": {
 "_hint": "mitum-nft-nft-id-v0.0.1",
 "collection": "CPRT",
 "idx": 1
 },
 "currency": "PEN"
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXYh1acYk32rVqeim4owg7icKb2qy7V9Sq2dv9f5fC7SXdQMJWr9K8vGdk3WuywoQ81PDeCYfFVdvt86W9GdwGwmENZhL",
 "signed_at": "2022-09-29T06:18:03.485888Z"
 }
],
 "memo": ""
 }
]
}

If you want to sign as a copyrighter, use the option --qualification=copyrighter.

transfer-nfts

transfer-nfts is a command to transfer nft from the nft owner to another account.

Agent, approved accounts, as well as nft owner, are eligible to send this operation.

$./mitum seal transfer-nfts --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency> <receiver> <nft>

EXAMPLE

For example, the process of transmitting nft is as follows:

ac0: nft owner
ac1: receiver
target nft: CPRT-00001

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ AC1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ NETWORK_ID=mitum

$ CURRENCY_ID=PEN

$ NFT_ID=CPRT,00001

$./mn seal transfer-nfts --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CURRENCY_ID $AC1_ADDR $NFT_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "7v6FZR3s4mGBHvD4TFV2JufL8vfo7offBsapNNw6FGz1",
 "body_hash": "8Zvs6uBc8zLpgdGayyGgyFkQfD8avqBWoKm1ZsUTiZe1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXYj9S5Va9K4nd3BcCAug4aBaev1ftzZye5KFf9MGMCJucCUZpSNGMtpP4a9kZcyjatH5GfP7kAZYCt4N9EsexrfAnPzM",
 "signed_at": "2022-09-29T06:25:32.460976Z",
 "operations": [
 {
 "_hint": "mitum-nft-transfer-operation-v0.0.1",
 "hash": "2jyBBECZJG8aEUFusUg1SgW37XnMZUH1PkJM1gEuiEa5",
 "fact": {
 "_hint": "mitum-nft-transfer-operation-fact-v0.0.1",
 "hash": "9UWSpSmomhkHzaVGvykTKweGSvMxYGJkSQni2yujfsCp",
 "token": "MjAyMi0wOS0yOVQwNjoyNTozMi40NjA4NjZa",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "items": [
 {
 "_hint": "mitum-nft-transfer-item-v0.0.1",
 "receiver": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "nft": {
 "_hint": "mitum-nft-nft-id-v0.0.1",
 "collection": "CPRT",
 "idx": 1
 },
 "currency": "PEN"
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvtC5RugSHM3YUb4NHkkrnVpAz8Wgv7BurQG2nepYXcmdshyZ89KFHrxC9vppditkhKYMz3jYvuyNZPg1TwtJuSoApLpZ",
 "signed_at": "2022-09-29T06:25:32.460966Z"
 }
],
 "memo": ""
 }
]
}

burn

burn is a command to incinerate nft.

Agent, approved accounts, as well as nft owner, are eligible to send this operation.

$./mitum seal burn --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency> <nft>

EXAMPLE

For example, the process of incinerating nft is as follows:

ac0: nft owner
target nft: CPRT-00001

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ NETWORK_ID=mitum

$ CURRENCY_ID=PEN

$ NFT_ID=CPRT,00001

$./mn seal burn --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CURRENCY_ID $NFT_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "2cbjue66H6EuaupEPEccGoJcsTuv3D96zDmFcaXSQZAr",
 "body_hash": "34GWZf6YqivGExAjc2tY4sYvxQXg5JQCnnvNxNdxHt8F",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZSNiYzfQtswgxP6TJgRK9ZFPLhrFbDSi8nFF2MfFpMtP2EUbycxMFPk3yvkCT7cT9YChK8QmgXu64yxJXdhUcSq4VNg",
 "signed_at": "2022-09-29T06:30:44.431107Z",
 "operations": [
 {
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXYrNL1wZqEcSkwBdxuPz922sdVh9T3gb2DhsDHLMN4MVkE1L9JGN8SXuYYXHGG8Vgm1fHh15X5E5sg1f6cXBuyZ3NvS1",
 "signed_at": "2022-09-29T06:30:44.431097Z"
 }
],
 "memo": "",
 "_hint": "mitum-nft-burn-operation-v0.0.1",
 "hash": "B7y5eABzoqzaRW1D16f4a3b7YLNRCgnmiYYauTeMtDqJ",
 "fact": {
 "_hint": "mitum-nft-burn-operation-fact-v0.0.1",
 "hash": "CxRKhLGYoUVJGPA8Bg2G86KVUQXBpm5YYGqKAby1mkGh",
 "token": "MjAyMi0wOS0yOVQwNjozMDo0NC40MzEwMDda",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "items": [
 {
 "_hint": "mitum-nft-burn-item-v0.0.1",
 "nft": {
 "_hint": "mitum-nft-nft-id-v0.0.1",
 "collection": "CPRT",
 "idx": 1
 },
 "currency": "PEN"
 }
]
 }
 }
]
}

delegate

delegate is a command that delegates the transfer and incineration rights for each nft of one collection to another account.

At this time, the authorized account will be Agent Account.

Even though an account does not own any NFTs of the collection, it can register an agent in advance by sending this operation.

$./mitum seal delegate --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency> <collection> <agent>

EXAMPLE

For example, the process of delegating agent rights is as follows:

ac0: general account
ac1: general/contract account (agent)
collection symbol: CPRT

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ AC1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ NETWORK_ID=mitum

$ CURRENCY_ID=PEN

$ COLLECTION_SYMBOL=CPRT

$./mn seal delegate --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CURRENCY_ID $COLLECTION_SYMBOL $AC1_ADDR --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "78bKwrFZiodwFxT29Nk3oUsJbeh38Pk1pQj6qYEvpnGC",
 "body_hash": "468Sb3PGoNKANYUhbUPp5W9xy8LXyQWDqrCxQJeWUsmS",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvsxWoVUzURqLxy47XegwGESDpWW4EZv484ZHz45NuZPNbX479jWsF8sByfEXU4wSAdmF7kqzhHwtEFPX7jfycDQYjnJx",
 "signed_at": "2022-09-29T08:40:15.381075Z",
 "operations": [
 {
 "_hint": "mitum-nft-delegate-operation-v0.0.1",
 "hash": "CXjXqfmbDtDaEvrnRkodBCd33jdWpG4q43SKBy8qm6uD",
 "fact": {
 "_hint": "mitum-nft-delegate-operation-fact-v0.0.1",
 "hash": "D2Re8uEsoan37UypSbkCxWk4jT6y2YqRKjCgnzcAVe5k",
 "token": "MjAyMi0wOS0yOVQwODo0MDoxNS4zODA5Nzha",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "items": [
 {
 "_hint": "mitum-nft-delegate-item-v0.0.1",
 "collection": "CPRT",
 "agent": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "mode": "allow",
 "currency": "PEN"
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "381yXZRNLYMpnRziEWDJamTNCiUFQKCBtgwJ5gGubkhHWkGxtBAgzXQAdXvHnKAZoAHb9f6fAbrMuSWj2EZtNZejnXUujSSV",
 "signed_at": "2022-09-29T08:40:15.381066Z"
 }
],
 "memo": ""
 }
]
}

If you want to withdraw your delegation, use the option --mode=cancel.

approve

approve is a command that grants the right to transfer and incinerate certain nfts to other accounts.

At this time, the authorized account will be Approved Account.

Only the owner or agent of the owner of the NFT can send this operation.

$./mitum seal approve --network-id=NETWORK-ID-FLAG <privatekey> <sender> <currency> <approved> <nft>

EXAMPLE

For example, the process of delegating agent rights is as follows:

ac0: general account
ac1: general/contract account (approved)
target nft: CPRT-00001

$ AC0_PRV=KwejqURNWCqao3MZZcuchZXotsg7LzcvxBYPdL9XA2V9w44Vf4ZDmpr

$ AC0_ADDR=BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca

$ AC1_ADDR=HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca

$ NETWORK_ID=mitum

$ CURRENCY_ID=PEN

$ NFT_ID=CPRT,1

$./mn seal approve --network-id=$NETWORK_ID $AC0_PRV $AC0_ADDR $CURRENCY_ID $AC1_ADDR $NFT_ID --pretty
{
 "_hint": "seal-v0.0.1",
 "hash": "HPyk7y6BNba63nd1uwmg9nmyPZLAjG8NxJwG9jCi9Uu1",
 "body_hash": "EoSmooTisCXHgjSvRuhGw2Y9eXY7SzCpwyyPfWVRmVfq",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvtRJTx9GUGUD9BXBBJJfXmD9Z6Lpsjo1sq8D1uRCn4Asc4sEHJ3JPZx39nvBgfHcbymNBgZGbwTez21HHtFb8S7Hd8KN",
 "signed_at": "2022-09-29T08:49:00.776655Z",
 "operations": [
 {
 "hash": "6szCeHzng8KZEApzwemEcGA5jwziW8AEbA7w4eHyis3s",
 "fact": {
 "_hint": "mitum-nft-approve-operation-fact-v0.0.1",
 "hash": "HM8WU5MnShZbdXcwozN4Zn87yvkL1bqpE8zkRqSFghp2",
 "token": "MjAyMi0wOS0yOVQwODo0OTowMC43NzY1Mjla",
 "sender": "BQafCTAUdwbgzoHfPcZf6gMBBnJ5h1vXB8oJ7aHz9gQcmca",
 "items": [
 {
 "_hint": "mitum-nft-approve-item-v0.0.1",
 "approved": "HjyXhhuHAZBGaEw2S5cKZhDwqVc1StbkJMtdgGm3F1dnmca",
 "nft": {
 "_hint": "mitum-nft-nft-id-v0.0.1",
 "collection": "CPRT",
 "idx": 1
 },
 "currency": "PEN"
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "tT9K5Mf22vtaB71VryiZDMj2hhijM7JAhXRHSFg3H2nGmpu",
 "signature": "AN1rKvsyGJc6hdiZv5JbQyWR7Bf4tDUyCVLWNK2fFbLLYEUUKaxfcv97nNkgdZnypuoRPJsFb46GBqkYUb8QKGxvSJwkbKNAL",
 "signed_at": "2022-09-29T08:49:00.776643Z"
 }
],
 "memo": "",
 "_hint": "mitum-nft-approve-operation-v0.0.1"
 }
]
}

To initialize the approved account of the NFT, please re-send the operation by filling approved with the nft owner’s account address.

Lookup Account

Prerequisite

	curl

	This is a command line tool for interacting with API.

	https://curl.se

	jq

	This is a command line tool for parsing json response.

	https://stedolan.github.io/jq/

Genesis Account Lookup

	You can look up genesis account from local blockdata.

$ AC0_ACC_KEY=GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623-mca:account

$ find blockfs -name "*-states-*" -print | xargs -n 1 gzcat | grep '^{' | jq '. | select(.key == "'$AC0_ACC_KEY'") | ["height: "+(.height|tostring), "state_key: " + .key, "address: " + .value.value.address, .operations, .value.value.keys.keys, .value.value.keys.threshold]'
[
 "height: 2",
 "state_key: GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623-mca:account",
 "address: FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 [
 "9mc8YEFWC27WEF3VVee1wk4ib5kvWBk1iJ41pWf27Mrc"
],
 [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 100
]

	99999999999999999977 = 99999999999999999999 - (2 create account: 10 * 2) - (2 fee: 1 * 2)

	You can also look up genesis account from digest api.

$ curl --insecure https://localhost:54320/account/FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca | jq '{_embedded}'
{
 "_embedded": {
 "_hint": "mitum-currency-account-value-v0.0.1",
 "hash": "AHQ4ohzwm7Y9T3f8vH5LTQ2rXKfVg3eazCdyihqsWv8F",
 "address": "FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 "threshold": 100
 },
 "balance": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "9999999999999",
 "currency": "MCC2"
 },
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "50",
 "currency": "MCC"
 }
],
 "height": 10,
 "previous_height": -2
 }
}

Note

When you look up state by address from mongodb, remove the part after - of the address and use it as a key.

	FnuHC5HkFMpr4QABukchEeT63612gGKus3cRK3KAqK7Bmca → GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623-mca

Operation Lookup

Whether the operation block is saved can be checked through the fact.hash of operation inquiry in the digest API.

$ FACT_HASH=3fDBD1i6V5VpGxB1di6JGgMPhyWZeWRML8FX4LnYXqJE

$ DIGEST_API="https://127.0.0.1:54320"

$ curl --insecure -v $DIGEST_API/block/operation/$FACT_HASH | jq
{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-operation-value-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-operation-value-v0.0.1",
 "hash": "3fDBD1i6V5VpGxB1di6JGgMPhyWZeWRML8FX4LnYXqJE",
 "operation": {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "AhqQMGZHDCeJDp74aQJ8rEXMC6GgQtpxP3rXnjjP41ui",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "3fDBD1i6V5VpGxB1di6JGgMPhyWZeWRML8FX4LnYXqJE",
 "token": "MjAyMS0wNi0xMFQxNTowMToxMy4wNDA0OTZa",
 "sender": "Gu5xHjhos5WkjGo9jKmYMY7dwWWzbEGdQCs11QkyAhh8mca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLu",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "50",
 "currency": "MCC"
 }
]
 },
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "EuCb6BVafkV1tBLsrMqkxojkanJCM4bvmG6JFUZ4s7XL",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "sdjgo1jJ2kxAxMyBj6qZDb8okZpwzHYE8ZACgePYW4eTmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "50",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvthtCymTu7gv2fSrMhGwqVuK3o24FrDe6GGLzRU8N5SWF62nPs3iKcEjuzwHya6P9JmrNLRF95ri8QTE4NBc66TxhCHm",
 "signed_at": "2021-06-10T15:01:13.053Z"
 }
],
 "memo": ""
 },
 "height": 13,
 "confirmed_at": "2021-06-10T15:01:13.354Z",
 "reason": null,
 "in_state": true,
 "index": 0
 },
 "_links": {
 "block": {
 "href": "/block/13"
 },
 "manifest": {
 "href": "/block/13/manifest"
 },
 "new_account:8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLu": {
 "href": "/account/8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "address": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "key": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLu"
 },
 "new_account:EuCb6BVafkV1tBLsrMqkxojkanJCM4bvmG6JFUZ4s7XL": {
 "href": "/account/2S252hnemi1oA3UZqEA7dvMSvbd3RA9ut1mgJNxoGW1Pmca",
 "key": "EuCb6BVafkV1tBLsrMqkxojkanJCM4bvmG6JFUZ4s7XL",
 "address": "2S252hnemi1oA3UZqEA7dvMSvbd3RA9ut1mgJNxoGW1Pmca"
 },
 "operation:{hash}": {
 "templated": true,
 "href": "/block/operation/{hash:(?i)[0-9a-z][0-9a-z]+}"
 },
 "block:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "self": {
 "href": "/block/operation/3fDBD1i6V5VpGxB1di6JGgMPhyWZeWRML8FX4LnYXqJE"
 }
 }
}

REST API

Digest API is a service that allows nodes to search blockchain data.

It can be used in various applications, such as wallet or blockchain explorer.

	API is provided through HTTP/2 network protocol.

	Response message follows HAL [https://datatracker.ietf.org/doc/html/draft-kelly-json-hal-08] and is delivered in JSON format.

	API data storage can be set in Configuration of Mitum Currency.

	Mitum’s main storage can be used, or a separate database is also possible.

	TLS certificates required for HTTP/2 will randomly generate self signed certificates if the service host is localhost unless the path of the file is set separately.

If an operation is not included in the block due to a specific problem, the cause can be checked through the response.

Node

REST API for querying the Mitum node.

	REQUEST URL

	METHOD

	RESPONSE

	/

	GET

	Node information

Block

List of REST APIs for querying Mitum blocks.

	REQUEST URL

	METHOD

	RESPONSE

	/block/manifests

	GET

	All block manifests

	/block/{height}

	GET

	Block by block height

	/block/{height}/manifest

	GET

	Block manifest by block height

	/block/{height}/operations

	GET

	All operations of block

	/block/{block_hash}

	GET

	Block by block hash

	/block/{block_hash}/manifest

	GET

	Block manifest by block hash

	/block/operations

	GET

	All operations

	/block/operation/{fact_hash}

	GET

	Operation by fact hash

Account

List of REST APIs for querying accounts.

	REQUEST URL

	METHOD

	RESPONSE

	/account/{address}

	GET

	Latest state of account

	/account/{address}/operations

	GET

	Operations related to account

	/accounts?publickey={public_key}

	GET

	Accounts related to public key

Currency

List of REST APIs for querying currencies.

	REQUEST URL

	METHOD

	RESPONSE

	/currency

	GET

	All currencies

	/currency/{currency_id}

	GET

	Currency by currency id

Refer to Mitum Currency Digest API Docs [https://rapidoc.test.protocon.network/] for details.

Feefi

List of REST APIs for feefi pools.

	REQUEST URL

	METHOD

	RESPONSE

	/feefi/{pool_id}/pool/{address}

	GET

	Feefi pool

	/feefi/{pool_id}/user/{address}

	GET

	Feefi user

NFT

List of REST APIs for nfts and nft collections.

	REQUEST URL

	METHOD

	RESPONSE

	/account/{address}/nftagent/{collection_symbol}

	GET

	Agent accounts of the account

	/account/{address}/nfts

	GET

	NFTs the account owns

	/nft/collection/{collection_symbol}

	GET

	Collection Design

	/nft/collection/{collection_symbol}/nfts

	GET

	NFTs in the collection

	/nft/{nft_id}

	GET

	NFT

Operation Builder

List of REST APIs for constructing operations.

	REQUEST URL

	METHOD

	RESPONSE

	/builder/operation

	GET

	Available Operation types

	/builder/operation/fact/template/{fact}

	GET

	Fact template

	/builder/operation/fact

	POST {fact}

	Operation message from fact

	/builder/operation/sign

	POST {operation}

	Operation with hash from operation

	/builder/send

	POST {operation/seal}

	Broadcast seal

Using Operation Builder

Digest API has Operation Builder to help write operation messages. Operation Builder makes it possible to generate operation messages through api without using SDK.

Get Operation Fact Template

By requesting an Operation Fact Template, you can receive a template for each operation type. You can create a fact message by changing the field value of the template.

	METHOD

	GET

	PATH

	/builder/operation/fact/template/{fact_type}

RESPONSE EXAMPLE

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "3Zdg5ZVdNFRbwX5WU7Nada3Wnx5VEgkHrDLVLkE8FMs1",
 "token": "cmFpc2VkIGJ5",
 "sender": "mothermca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "2TQ8Xn5tdowqkJt8kHWcNj2QKhuNRnnCwiXxFbRbwBWY",
 "keys": [
 {
 _hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "oRHdEPPrgbfNxUp6TWsC35DmWu1zbLCW9rp41Z8npF8Hmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "-333",
 "currency": "xXx"
 }
]
 }
]
 },
 "_links": {
 "self": {
 "href": "/builder/operation/fact/template/create-accounts"
 }
 },
 "_extra": {
 "default": {
 "items.keys.keys.key": "oRHdEPPrgbfNxUp6TWsC35DmWu1zbLCW9rp41Z8npF8Hmpu"
 "items.big": "-333",
 "currency": "xXx",
 "token": "cmFpc2VkIGJ5",
 "sender": "mothermca",
 }
 }
}

	The _embedded object among the contents of the template responded represents the fact. Edit the contents of the fact json object and use it in Build Operation Message.

create-accounts FACT EXAMPLE

{
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "3Zdg5ZVdNFRbwX5WU7Nada3Wnx5VEgkHrDLVLkE8FMs1",
 "token": "cmFpc2VkIGJ5",
 "sender": "mothermca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "2TQ8Xn5tdowqkJt8kHWcNj2QKhuNRnnCwiXxFbRbwBWY",
 "keys": [
 {
 _hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "oRHdEPPrgbfNxUp6TWsC35DmWu1zbLCW9rp41Z8npF8Hmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "-333",
 "currency": "xXx"
 }
]
 }
]
}

	There is no need to edit the hash value as the builder automatically completes it.

	token is a base64 encoded value.

	Use the _hint item as it is.

Check key for the details of key registration of accounts related to keys.

Build Operation Message

The created fact message is sent to the request body in json format and the completed fact message is received.

In the case of the example, you will receive a fact message with the keys hash, token, and fact hash changed.

	METHOD

	POST

	PATH

	/builder/operation/fact

RESPONSE EXAMPLE

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "_embedded": {
 "hash": "92FXbSdm46iuA7kQuC6ENfi5pd64G1Uiu49A3VmaA8Tu",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "9ttqrz1bkFNCySVnrhYrxewcVB6mkZWWvBpSPS2fShip",
 "token": "MjAyMS0wNi0xNSAwODo0OTozOS45NDggKzAwMDAgVVRD",
 "sender": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "333",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "oRHdEPPrgbfNxUp6TWsC35DmWu1zbLCW9rp41Z8npF8Hmpu",
 "signature": "22UZo26eN",
 "signed_at": "2020-10-08T07:53:26Z"
 }
],
 "memo": "",
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1"
 },
 "_links": {
 "self": {
 "href": "/builder/operation/fact"
 }
 },
 "_extra": {
 "default": {
 "fact_signs.signer": "oRHdEPPrgbfNxUp6TWsC35DmWu1zbLCW9rp41Z8npF8Hmpu",
 "fact_signs.signature": "22UZo26eN"
 },
 "signature_base": "hCi8MFOChFusqKx6v0zrsJ8u3tppYUOewadYjwTvDUFtaXR1bQ=="
 }
}

Check the fact.hash value of the response data. fact.hash value is used as data to complete the value of the fact_sign object.

In a fact_sign in fact_signs,

	The signer is the publickey of the keypair used to create the signature.

	The signature is generated by the signer.

	signed_at is the datetime at which the signature was generated.

Sign Operation Message

A signature is created using the hash of the received fact then the fact_sign for it is added.

When the generated fact message is sent to the request body in json format, the completed operation message with the operation hash added is received.

	METHOD

	POST

	PATH

	/builder/operation/sign

REQUEST BODY EXAMPLE

{
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "CDUkHDJB4aC8552QvVCAPk8ZtohSuow67cPZZxqZG7RE",
 "token": "MjAyMS0wMy0yNCAwMjozNzozNC4xNzQgKzAwMDAgVVRD",
 "sender": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "333",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvtVhunuSdS8g3KWQ1PFBEP9bzz4sU4Vb3B4JrYyVUF79XwNUrG6AzoVfq6mHsK8W4S5hu7LKjDARfAQeDWwit1GnKXcN",
 "signed_at": "2021-06-16T01:56:14.124268Z"
 }
],
 "memo": "",
}

RESPONSE EXAMPLE

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "_embedded": {
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "CDUkHDJB4aC8552QvVCAPk8ZtohSuow67cPZZxqZG7RE",
 "token": "MjAyMS0wMy0yNCAwMjozNzozNC4xNzQgKzAwMDAgVVRD",
 "sender": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "333",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvtVhunuSdS8g3KWQ1PFBEP9bzz4sU4Vb3B4JrYyVUF79XwNUrG6AzoVfq6mHsK8W4S5hu7LKjDARfAQeDWwit1GnKXcN",
 "signed_at": "2021-06-16T01:56:14.124268Z"
 }
],
 "memo": "",
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "9pNsg6gkQJoVsB7iqY3udeLVti2Yxgbe4mFkGqzds2AT"
 },
 "_links": {
 "self": {
 "href": "/builder/operation/sign"
 }
 }
}

Broadcast Message to Network

By requesting an Operation or Seal message as the request body, you can broadcast it to the network.

In this case, the signer of the seal becomes the digest node.

	If the request body is an operation, a new seal is created and the digest node signs.

	If the request body is a seal, the seal is signed by the digest node.

	METHOD

	POST

	PATH

	/builder/send

REQUEST BODY EXAMPLE

{
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "CDUkHDJB4aC8552QvVCAPk8ZtohSuow67cPZZxqZG7RE",
 "token": "MjAyMS0wMy0yNCAwMjozNzozNC4xNzQgKzAwMDAgVVRD",
 "sender": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "333",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvtVhunuSdS8g3KWQ1PFBEP9bzz4sU4Vb3B4JrYyVUF79XwNUrG6AzoVfq6mHsK8W4S5hu7LKjDARfAQeDWwit1GnKXcN",
 "signed_at": "2021-06-16T01:56:14.124268Z"
 }
],
 "memo": "",
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "9pNsg6gkQJoVsB7iqY3udeLVti2Yxgbe4mFkGqzds2AT"
}

RESPONSE EXAMPLE

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "seal-v0.0.1",
 "_embedded": {
 "_hint": "seal-v0.0.1",
 "hash": "4UvusVw9RYdqxHQz2EzDb6gW6CgoZGPayD1yZBcdSSHW",
 "body_hash": "9AFx2gAqeMveV6ojwUi6HKx19GfbZZggPTGhTS3dDih5",
 "signer": "uGnKHNfh8EtNVXsL4Qu1a655oQuzibK8Tc41TZUHzHqkmpu",
 "signature": "381yXZAzT6LcYUXfTG9Fifc6neDfXDqpjzuGzfqr1LXPMvvtseJKzGSRwdL6jvkHBaVRdGPD4YfrHnp2rbpZEEWRNAePiJBt",
 "signed_at": "2021-06-16T03:06:33.649190888Z",
 "operations": [
 {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "9pNsg6gkQJoVsB7iqY3udeLVti2Yxgbe4mFkGqzds2AT",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "CDUkHDJB4aC8552QvVCAPk8ZtohSuow67cPZZxqZG7RE",
 "token": "MjAyMS0wMy0yNCAwMjozNzozNC4xNzQgKzAwMDAgVVRD",
 "sender": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "333",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvtVhunuSdS8g3KWQ1PFBEP9bzz4sU4Vb3B4JrYyVUF79XwNUrG6AzoVfq6mHsK8W4S5hu7LKjDARfAQeDWwit1GnKXcN",
 "signed_at": "2021-06-16T01:56:14.124268Z"
 }
],
 "memo": ""
 }
]
 },
 "_links": {
 "self": {
 "href": ""
 },
 "operation:0": {
 "href": "/block/operation/CDUkHDJB4aC8552QvVCAPk8ZtohSuow67cPZZxqZG7RE"
 }
 }
}

Confirming the Success of the Operation

By querying the operation with the fact hash value in the api, you can check whether the operation is successfully processed or not.

	METHOD

	GET

	PATH

	/block/operation/{operation_fact_hash}

	If _embedded.in_state is true in the response message, it means the operation has successfully been saved in the block.

	If _embedded.in_state is false, it means the operation hasn’t been saved in the block.

	If the operation fails, the reason may be as follows.

	insufficient balance of sender when sending money

	incorrect signature

	create-account amount less than new-account-min-balance

	etc…

You can check the reason for failure in _embedded.reason.msg in the response message.

RESPONSE EXAMPLE

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-operation-value-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-operation-value-v0.0.1",
 "hash": "CDUkHDJB4aC8552QvVCAPk8ZtohSuow67cPZZxqZG7RE",
 "operation": {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "9pNsg6gkQJoVsB7iqY3udeLVti2Yxgbe4mFkGqzds2AT",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "CDUkHDJB4aC8552QvVCAPk8ZtohSuow67cPZZxqZG7RE",
 "token": "MjAyMS0wMy0yNCAwMjozNzozNC4xNzQgKzAwMDAgVVRD",
 "sender": "CoXPgSxcad3fRAbp2JBEeGcYGEQ7dQhdZGWXLbTHpwuGmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GkswusUGC22R5wmrXWB5yqFm8UN22yHLihZMkMb3z623",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2Aopgs1nSzNCWLvQx5fkBJCi2uxjYBfN8TqneqFd9DzGcmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "333",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "rcrd3KA2wWNhKdAP8rHRzfRmgp91oR9mqopckyXRmCvGmpu",
 "signature": "AN1rKvtVhunuSdS8g3KWQ1PFBEP9bzz4sU4Vb3B4JrYyVUF79XwNUrG6AzoVfq6mHsK8W4S5hu7LKjDARfAQeDWwit1GnKXcN",
 "signed_at": "2021-06-16T01:56:14.124Z"
 }
],
 "memo": ""
 },
 "height": 108674,
 "confirmed_at": "2021-06-16T02:26:55.75Z",
 "reason": {
 "_hint": "base-operation-reason-v0.0.1",
 "msg": "state, \"9g4BAB8nZdzWmrsAomwdvNJU2hA2psvkfTQ5XdLn4F4r-mca:account\" does not exist",
 "data": null
 },
 "in_state": false,
 "index": 0
 },
 "_links": {
 "manifest": {
 "href": "/block/108674/manifest"
 },
 "operation:{hash}": {
 "templated": true,
 "href": "/block/operation/{hash:(?i)[0-9a-z][0-9a-z]+}"
 },
 "block:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "self": {
 "href": "/block/operation/CDUkHDJB4aC8552QvVCAPk8ZtohSuow67cPZZxqZG7RE"
 },
 "block": {
 "href": "/block/108674"
 }
 }
}

API List

This is the page of the explanation for each API Path.

For details, visit Mitum Currency Digest API Docs [https://rapidoc.test.protocon.network/].

Node Info

/

	It returns the node information of the network.

	PATH

	METHOD

	/

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "node-info-v0.0.1",
 "_embedded": {
 "_hint": "node-info-v0.0.1",
 "node": {
 "_hint": "base-node-v0.0.1",
 "address": "node4sas",
 "publickey": "21im86HvT3aC4p23AExN7PKRD3RF1GR8cD3E95iEJHhNKmpu"
 },
 "network_id": "bWl0dW0=",
 "state": "CONSENSUS",
 "last_block": {
 "_hint": "block-manifest-v0.0.1",
 "hash": "7KjDLJMMzKw6RtfwjoZZ75rcab15mn6ASjQbGjotX1NW",
 "height": 1622504,
 "round": 0,
 "proposal": "H9ztzWj46ayufSvBXjdNXo7Xs3q2DK8nj9exaMPo1iyt",
 "previous_block": "JeT7t26J279p3EWq1S1yAEdXUqu4EYZa9tprT9nkMCy",
 "block_operations": null,
 "block_states": null,
 "confirmed_at": "2022-02-03T04:47:01.355363841Z",
 "created_at": "2022-02-03T04:47:01.361237906Z"
 },
 "version": "v0.0.1-stable-383cf0c-20211224",
 "policy": {
 "interval_broadcasting_accept_ballot": 1000000000,
 "timespan_valid_ballot": 60000000000,
 "max_operations_in_seal": 10,
 "interval_broadcasting_proposal": 1000000000,
 "wait_broadcasting_accept_ballot": 1000000000,
 "interval_broadcasting_init_ballot": 1000000000,
 "network_connection_timeout": 3000000000,
 "suffrage": "{\"cache_size\":10,\"number_of_acting\":1,\"type\":\"\"}",
 "threshold": 100,
 "max_operations_in_proposal": 100,
 "timeout_waiting_proposal": 5000000000
 },
 "suffrage": [
 {
 "address": "node4sas",
 "publickey": "21im86HvT3aC4p23AExN7PKRD3RF1GR8cD3E95iEJHhNKmpu",
 "conninfo": {
 "_hint": "http-conninfo-v0.0.1",
 "url": "https://3.35.171.179:54321",
 "insecure": true
 }
 }
],
 "conninfo": {
 "_hint": "http-conninfo-v0.0.1",
 "url": "https://3.35.171.179:54321",
 "insecure": true
 }
 },
 "_links": {
 "block:{hash}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "currency:{currencyid}": {
 "templated": true,
 "href": "/currency/{currencyid:.*}"
 },
 "block:current": {
 "href": "/block/1622504"
 },
 "block:current-manifest": {
 "href": "/block/1622504/manifest"
 },
 "block:manifest:{hash}": {
 "templated": true,
 "href": "/block/{hash:(?i)[0-9a-z][0-9a-z]+}/manifest"
 },
 "block:next": {
 "href": "/block/1622505"
 },
 "block:prev": {
 "href": "/block/1622503"
 },
 "self": {
 "href": "/"
 },
 "currency": {
 "href": "/currency"
 },
 "block:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "block:manifest:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}/manifest"
 }
 }
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

Block

/block/manifests

	It returns all block manifests of the network.

	PATH

	METHOD

	/block/manifests

	GET

	Query

	
	Example

	offset

	manifests after offset - block height

	2

	reverse

	manifests by reverse order

	1 (true)

	offset: integer; block height

	reverse: boolean; use 1 for true

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "",
 "_embedded": [
 {
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "block-manifest-v0.0.1",
 "_embedded": {
 "_hint": "block-manifest-v0.0.1",
 "hash": "F3qqMUDjofiLkftSSHn4N6uZYBppQzc48iKs8Aqupe9b",
 "height": 1,
 "round": 0,
 "proposal": "34VNRjGW3TqrQ455dyqoKp1EDUeAvu3VfnyLu3aZDcur",
 "previous_block": "6AMoeUTpDfF2Vs73HRWRCVfkqnVLs6gSwUpXYbJzDmAV",
 "block_operations": null,
 "block_states": null,
 "confirmed_at": "2021-12-26T04:22:10.627Z",
 "created_at": "2021-12-26T04:22:10.639Z"
 },
 "_links": {
 "next": {
 "href": "/block/2/manifest"
 },
 "block": {
 "href": "/block/1"
 },
 "block:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "block:{hash}": {
 "href": "/block/{height:[0-9]+}",
 "templated": true
 },
 "manifest:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}/manifest"
 },
 "manifest:{hash}": {
 "templated": true,
 "href": "/block/{hash:(?i)[0-9a-z][0-9a-z]+}/manifest"
 },
 "self": {
 "href": "/block/1/manifest"
 },
 "alternate": {
 "href": "/block/F3qqMUDjofiLkftSSHn4N6uZYBppQzc48iKs8Aqupe9b/manifest"
 }
 }
 },
 ...
],
 "_links": {
 "next": {
 "href": "/block/manifests?offset=10"
 },
 "reverse": {
 "href": "/block/manifests?reverse=1"
 },
 "self": {
 "href": "/block/manifests?offset=0"
 }
 }
}

	404 (No more manifests)

If there are no more manifests, it returns 404.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "manifests not found",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/block/{height}

	It returns the block information of the block by block height.

	PATH

	METHOD

	/block/{height}

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "",
 "_links": {
 "self": {
 "href": "/block/5"
 },
 "manifest:{hash}": {
 "templated": true,
 "href": "/block/{hash:(?i)[0-9a-z][0-9a-z]+}/manifest"
 },
 "prev": {
 "href": "/block/4"
 },
 "current": {
 "href": "/block/5"
 },
 "current-manifest": {
 "href": "/block/5/manifest"
 },
 "block:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "block:{hash}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "manifest:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}/manifest"
 },
 "next": {
 "href": "/block/6"
 }
 }
}

	400 (block not found)

If the height you request with is wrong, it returns 400.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "title": "bad request; invalid height found for block by height: strconv.ParseInt: parsing \"...\": value out of range",
 "detail": "..."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/block/{height}/manifest

	It returns the block manifest of the block by block height.

	PATH

	METHOD

	/block/{height}/manifest

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "block-manifest-v0.0.1",
 "_embedded": {
 "_hint": "block-manifest-v0.0.1",
 "hash": "9zVqaLhLngT8gmTUXfRNLo7WxGQBYoZkYw4NSDrKTrvX",
 "height": 222,
 "round": 0,
 "proposal": "66yixQwnHwBaJ4qDfpwsTa2tBgDGXYHGT1Nta7jD24S1",
 "previous_block": "CyPXbZUAhRb5dH2cJHJtfw51H73NwLSkyz1Ad7iWrpDc",
 "block_operations": null,
 "block_states": null,
 "confirmed_at": "2021-12-26T04:29:44.869Z",
 "created_at": "2021-12-26T04:29:44.877Z"
 },
 "_links": {
 "alternate": {
 "href": "/block/9zVqaLhLngT8gmTUXfRNLo7WxGQBYoZkYw4NSDrKTrvX/manifest"
 },
 "next": {
 "href": "/block/223/manifest"
 },
 "block": {
 "href": "/block/222"
 },
 "block:{hash}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "manifest:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}/manifest"
 },
 "manifest:{hash}": {
 "templated": true,
 "href": "/block/{hash:(?i)[0-9a-z][0-9a-z]+}/manifest"
 },
 "block:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "self": {
 "href": "/block/222/manifest"
 }
 }
}

	400 (manifest not found)

If the height you request with is wrong, it returns 400.

{
 "title": "invalid height found for manifest by height",
 "detail": "...",
 "_hint": "mitum-currency-problem-v0.0.1",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others"
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/block/{height}/operations

	It returns all operations of the block by block height.

	PATH

	METHOD

	/block/{height}/operations

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "",
 "_embedded": [
 {
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-operation-value-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-operation-value-v0.0.1",
 "hash": "FXRvh8ovbAJdmwdz66gtgb1EJSAaSZkA5TadV8KD1oGs",
 "operation": {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "EikTtWw8izGuaAWbu8dP7PRKpc5Ri6qYzPxaxaD7fr2r",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "FXRvh8ovbAJdmwdz66gtgb1EJSAaSZkA5TadV8KD1oGs",
 "token": "MjAyMS0xMi0yN1QwNzo1ODo1My4zMDE3NjcrMDA6MDA=",
 "sender": "5om5ZuSsqjEj7CxoF1VyLLJYhQoCwBPjUciy9gu8dh8hmca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "C7ntk12BMkjpBoita2qf6USE45moRmLcrpUXn2FxCB31",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "2BfVL17JezsZjsYx3PzXW9aRzERFA4F2Hnj1bFK7akXhAmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "p4nHuxamW5HQZQd1mpkMqsHCbnnwdjWZ9c21eF2eKdLrmpu",
 "signature": "AN1rKvtMWpbB3qLou12rkGVXxJxW4kYitEYkagNQJ4QWCYgNYSrLvsxDkLMxRfW2Do9KhkvzPVrr3r48YPN775yiJiMiyGx5m",
 "signed_at": "2021-12-27T07:58:53.323Z"
 }
],
 "memo": ""
 },
 "height": 48480,
 "confirmed_at": "2021-12-27T08:01:54.507Z",
 "reason": {
 "_hint": "base-operation-reason-v0.0.1",
 "msg": "; state, \"5om5ZuSsqjEj7CxoF1VyLLJYhQoCwBPjUciy9gu8dh8hmca:account\" does not exist",
 "data": null
 },
 "in_state": false,
 "index": 0
 },
 "_links": {
 "block": {
 "href": "/block/48480"
 },
 "manifest": {
 "href": "/block/48480/manifest"
 },
 "self": {
 "href": "/block/operation/FXRvh8ovbAJdmwdz66gtgb1EJSAaSZkA5TadV8KD1oGs"
 }
 }
 }
],
 "_links": {
 "reverse": {
 "href": "/block/48480/operations?reverse=1"
 },
 "next": {
 "href": "/block/48480/operations?offset=0"
 },
 "self": {
 "href": "/block/48480/operations"
 }
 }
}

	404 (operations not found)

If there are no more operations or there aren’t any operations, it returns 404.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "operations not found",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/block/{block_hash}

	It returns the block information of the block by block hash.

	PATH

	METHOD

	/block/{block_hash}

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "",
 "_links": {
 "manifest": {
 "href": "/block/7tAfifVzxSz3kKzGq9RceKtuVAeFB7E9jvCUnojV3YfM/manifest"
 },
 "manifest:{height}": {
 "href": "/block/{height:[0-9]+}/manifest",
 "templated": true
 },
 "manifest:{hash}": {
 "templated": true,
 "href": "/block/{hash:(?i)[0-9a-z][0-9a-z]+}/manifest"
 },
 "block:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "block:{hash}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "self": {
 "href": "/block/7tAfifVzxSz3kKzGq9RceKtuVAeFB7E9jvCUnojV3YfM"
 }
 }
}

	400 (block not found)

If the block hash is wrong, it returns 400.

{
 "detail": "..."
 "_hint": "mitum-currency-problem-v0.0.1",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "title": "bad request; invalid hash for block by hash: invalid; empty hash"
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/block/{block_hash}/manifest

	It returns the block manifest of the block by block hash.

	PATH

	METHOD

	/block/{block_hash}/manifest

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "block-manifest-v0.0.1",
 "_embedded": {
 "_hint": "block-manifest-v0.0.1",
 "hash": "7tAfifVzxSz3kKzGq9RceKtuVAeFB7E9jvCUnojV3YfM",
 "height": 1594489,
 "round": 0,
 "proposal": "3uSAcktWpnrB31RBKS35WABEMZDvDTEtvkMCDVLYfjR8",
 "previous_block": "3FiMUXRZTkcPQCcLwN2fhEP8C8xr9QrB4cK4yTentG59",
 "block_operations": "EF2cQGmrzW4AfUeZyEym7UCSbrMkXCcjhUadk2oM5ME2",
 "block_states": "YMyRynoNP11HfX9aMBjbw8bPWR1MVcaczqeLWV4wve8",
 "confirmed_at": "2022-02-02T12:53:44.669Z",
 "created_at": "2022-02-02T12:53:44.684Z"
 },
 "_links": {
 "block": {
 "href": "/block/1594489"
 },
 "manifest:{hash}": {
 "templated": true,
 "href": "/block/{hash:(?i)[0-9a-z][0-9a-z]+}/manifest"
 },
 "block:{height}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "block:{hash}": {
 "templated": true,
 "href": "/block/{height:[0-9]+}"
 },
 "manifest:{height}": {
 "href": "/block/{height:[0-9]+}/manifest",
 "templated": true
 },
 "self": {
 "href": "/block/1594489/manifest"
 },
 "alternate": {
 "href": "/block/7tAfifVzxSz3kKzGq9RceKtuVAeFB7E9jvCUnojV3YfM/manifest"
 },
 "next": {
 "href": "/block/1594490/manifest"
 }
 }
}

	404 (manifest not found)

If the block hash is wrong, it returns 404.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "title": "not found; manifest not found",
 "detail": "..."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/block/operations

	It returns all operations of the network.

	PATH

	METHOD

	/block/operations

	GET

	Query

	
	Example

	offset

	manifests after offset - block height

	2

	reverse

	manifests by reverse order

	1 (true)

	offset: integer; block height

	reverse: boolean; use 1 for true

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "",
 "_embedded": [
 {
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-operation-value-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-operation-value-v0.0.1",
 "hash": "7rSkwgF6BmLmid13jiBJKaaRtgYXS7rtDBFSuNdUNPeo",
 "operation": {
 "_hint": "mitum-currency-genesis-currencies-operation-v0.0.1",
 "hash": "2rtWNNHP15pBcdmmzCjsg45D5KPsqs49YPMRC8AtTJbo",
 "fact": {
 "_hint": "mitum-currency-genesis-currencies-operation-fact-v0.0.1",
 "hash": "7rSkwgF6BmLmid13jiBJKaaRtgYXS7rtDBFSuNdUNPeo",
 "token": "bWl0dW0=",
 "genesis_node_key": "21im86HvT3aC4p23AExN7PKRD3RF1GR8cD3E95iEJHhNKmpu",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLu",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu"
 }
],
 "threshold": 100
 },
 "currencies": [
 {
 "_hint": "mitum-currency-currency-design-v0.0.1",
 "amount": {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "1000000000000000000000000000",
 "currency": "PEN"
 },
 "genesis_account": null,
 "policy": {
 "_hint": "mitum-currency-currency-policy-v0.0.1",
 "new_account_min_balance": "10",
 "feeer": {
 "_hint": "mitum-currency-fixed-feeer-v0.0.1",
 "receiver": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "amount": "1"
 }
 },
 "aggregate": "1000000000000000000000000000"
 },
 ...
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "21im86HvT3aC4p23AExN7PKRD3RF1GR8cD3E95iEJHhNKmpu",
 "signature": "AN1rKvt3e9wPJjbGEvucwxr7ntUX4oNBvsGmU4QQBFdAv1ToxXdCBqtbpJ7TwuqY1DyTCcS8FBQjJDbYsWpWixTTtXA5y3R5y",
 "signed_at": "2021-12-26T04:21:22.159Z"
 }
]
 },
 "height": 0,
 "confirmed_at": "2021-12-26T04:21:23.013Z",
 "reason": null,
 "in_state": true,
 "index": 0
 },
 "_links": {
 "block": {
 "href": "/block/0"
 },
 "manifest": {
 "href": "/block/0/manifest"
 },
 "self": {
 "href": "/block/operation/7rSkwgF6BmLmid13jiBJKaaRtgYXS7rtDBFSuNdUNPeo"
 }
 }
 },
 ...
],
 "_links": {
 "reverse": {
 "href": "/block/operations?reverse=1"
 },
 "next": {
 "href": "/block/operations?offset=86472,0"
 },
 "self": {
 "href": "/block/operations"
 }
 }
}

	404 (operations not found)

If there aren’t any operations, it returns 404.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "operations not found",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/block/operation/{fact_hash}

	It returns the operation information of the operation by fact hash.

	PATH

	METHOD

	/block/operation/{fact_hash}

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-operation-value-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-operation-value-v0.0.1",
 "hash": "CtHUdBrLb5cbrkqorSfudS9o4iVMDNafxKiLHZBArHgU",
 "operation": {
 "_hint": "mitum-currency-fee-operation-v0.0.1",
 "hash": "ByDxnBzr116YvesYsFAdn9LR5bw94YWvVEaEFFZukh6H",
 "fact": {
 "_hint": "mitum-currency-fee-operation-fact-v0.0.1",
 "hash": "CtHUdBrLb5cbrkqorSfudS9o4iVMDNafxKiLHZBArHgU",
 "token": "eVQYAAAAAAA=",
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "1",
 "currency": "PEN"
 }
]
 }
 },
 "height": 1594489,
 "confirmed_at": "2022-02-02T12:53:44.669Z",
 "reason": null,
 "in_state": true,
 "index": 1
 },
 "_links": {
 "block": {
 "href": "/block/1594489"
 },
 "manifest": {
 "href": "/block/1594489/manifest"
 },
 "operation:{hash}": {
 "templated": true,
 "href": "/block/operation/{hash:(?i)[0-9a-z][0-9a-z]+}"
 },
 "block:{height}": {
 "href": "/block/{height:[0-9]+}",
 "templated": true
 },
 "self": {
 "href": "/block/operation/CtHUdBrLb5cbrkqorSfudS9o4iVMDNafxKiLHZBArHgU"
 }
 }
}

	400 (operation not found)

If the fact hash is wrong, it returns 400.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "title": "invalid hash for operation by hash: invalid; empty hash",
 "detail": "..."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

Account

/account/{address}

	It returns the latest state of the account by account address.

	PATH

	METHOD

	/account/{address}

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-account-value-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-account-value-v0.0.1",
 "hash": "YYWJs2ZEmqvuMHkKco9KwJZL9QUuD9j5QZng5KS4mVR",
 "address": "Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71y",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 50,
 "key": "kdfdUyAkiG88TVNZ28TV7LoRyLynFzH89btk1ctb9u1Ympu"
 },
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 50,
 "key": "toPtGPdHCsexeVJcJXykBM14gBEJqc487PmgGVjV3w4vmpu"
 }
],
 "threshold": 100
 },
 "balance": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "10",
 "currency": "CWC"
 }
],
 "height": 1198976,
 "previous_height": -2
 },
 "_links": {
 "operations:{offset,reverse}": {
 "templated": true,
 "href": "/account/Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca/operations?offset={offset}&reverse=1"
 },
 "block": {
 "href": "/block/1198976"
 },
 "self": {
 "href": "/account/Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca"
 },
 "operations": {
 "href": "/account/Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca/operations"
 },
 "operations:{offset}": {
 "templated": true,
 "href": "/account/Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca/operations?offset={offset}"
 }
 }
}

	404 (account not found)

It the account address is wrong, it returns 404.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "title": "not found; account, ... not found",
 "detail": "..."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/account/{address}/operations

	It returns all operations related to the account by account address.

	PATH

	METHOD

	/account/{address}/operations

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "",
 "_embedded": [
 {
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-operation-value-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-operation-value-v0.0.1",
 "hash": "G57ZwvuAxRA778JGTPz16HSHKhAR6Nb7NegRR2VHNwqd",
 "operation": {
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "G57ZwvuAxRA778JGTPz16HSHKhAR6Nb7NegRR2VHNwqd",
 "token": "MjAyMi0wMS0xN1QwNjoxOTo1MS44NTJa",
 "sender": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-multiple-amounts-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "CCxfWi1oErWX7vbxddAsLx8bXSwR1FUbwEkAJcb8Qmkf",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "kdfdUyAkiG88TVNZ28TV7LoRyLynFzH89btk1ctb9u1Ympu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100000000000000000000000000",
 "currency": "CWC"
 },
 ...
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "AN1rKvtUWK3qTmQKr613vW5eQm6qt3fRx4wZwEMdecudX8aP9w73KcbVBxuDPGHWLr9j8nL1MJfdSiMiYXNoM7qpsj59N2S14",
 "signed_at": "2022-01-17T06:19:51.886Z"
 }
],
 "memo": "",
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "6XAxmTGfm8AxK9ey242FU3M1Y6pkzgtK2LoEYTjHrASh"
 },
 "height": 910536,
 "confirmed_at": "2022-01-17T06:19:53.617Z",
 "reason": null,
 "in_state": true,
 "index": 0
 },
 "_links": {
 "block": {
 "href": "/block/910536"
 },
 "manifest": {
 "href": "/block/910536/manifest"
 },
 "new_account:CCxfWi1oErWX7vbxddAsLx8bXSwR1FUbwEkAJcb8Qmkf": {
 "key": "CCxfWi1oErWX7vbxddAsLx8bXSwR1FUbwEkAJcb8Qmkf",
 "address": "CCxfWi1oErWX7vbxddAsLx8bXSwR1FUbwEkAJcb8Qmkfmca",
 "href": "/account/CCxfWi1oErWX7vbxddAsLx8bXSwR1FUbwEkAJcb8Qmkfmca"
 },
 "self": {
 "href": "/block/operation/G57ZwvuAxRA778JGTPz16HSHKhAR6Nb7NegRR2VHNwqd"
 }
 }
 },
 ...
],
 "_links": {
 "next": {
 "href": "/account/CCxfWi1oErWX7vbxddAsLx8bXSwR1FUbwEkAJcb8Qmkfmca/operations?offset=1291226,0"
 },
 "reverse": {
 "href": "/account/CCxfWi1oErWX7vbxddAsLx8bXSwR1FUbwEkAJcb8Qmkfmca/operations?reverse=1"
 },
 "self": {
 "href": "/account/CCxfWi1oErWX7vbxddAsLx8bXSwR1FUbwEkAJcb8Qmkfmca/operations"
 },
 "account": {
 "href": "/account/CCxfWi1oErWX7vbxddAsLx8bXSwR1FUbwEkAJcb8Qmkfmca"
 }
 }
}

	404 (operations not found)

If there are no more operations or there aren’t any operations for the account, it returns 404.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "title": "not found; operations not found",
 "detail": "..."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/accounts?publickey={public_key}

	It returns all accounts which keys contains the public key as a key.

	PATH

	METHOD

	/accounts?publickey={public_key}

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "",
 "_embedded": [
 {
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-account-value-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-account-value-v0.0.1",
 "hash": "YYWJs2ZEmqvuMHkKco9KwJZL9QUuD9j5QZng5KS4mVR",
 "address": "Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71y",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 50,
 "key": "kdfdUyAkiG88TVNZ28TV7LoRyLynFzH89btk1ctb9u1Ympu"
 },
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 50,
 "key": "toPtGPdHCsexeVJcJXykBM14gBEJqc487PmgGVjV3w4vmpu"
 }
],
 "threshold": 100
 },
 "height": 1198976,
 "previous_height": -2
 },
 "_links": {
 "operations:{offset,reverse}": {
 "templated": true,
 "href": "/account/Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca/operations?offset={offset}&reverse=1"
 },
 "block": {
 "href": "/block/1198976"
 },
 "self": {
 "href": "/account/Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca"
 },
 "operations": {
 "href": "/account/Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca/operations"
 },
 "operations:{offset}": {
 "href": "/account/Aqv9Gn15zM3j79WgzwVe73RVZ4RbSab7UK9vSpRbF71ymca/operations?offset={offset}",
 "templated": true
 }
 }
 },
 ...
],
 "_links": {
 "next": {
 "href": "/accounts?publickey=kdfdUyAkiG88TVNZ28TV7LoRyLynFzH89btk1ctb9u1Ympu&offset=1279558,JLni2ExjGn87UNUro8G7aeiM97M9LGFo8sQfdvGgxk1mca"
 },
 "self": {
 "href": "/accounts?publickey=kdfdUyAkiG88TVNZ28TV7LoRyLynFzH89btk1ctb9u1Ympu"
 }
 }
}

	400 (accounts not found)

If the public key is invalid(for example, wrong format), it returns 400.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "title": "invalue accounts query: failed to decode publickey, \"...\": failed to decode key.BasePublickey: invalid key; pubkey string is empty",
 "detail": ""
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

Currency

/currency

	It returns all currency ids in the network.

	PATH

	METHOD

	/currency

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "",
 "_links": {
 "currency:{currencyid}": {
 "href": "/currency/{currencyid:.*}",
 "templated": true
 },
 "self": {
 "href": "/currency"
 },
 "currency:PEN": {
 "href": "/currency/PEN"
 }
 }
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/currency/{currency_id}

	It returns the information of the currency by currency id.

	PATH

	METHOD

	/currency/{currency_id}

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-currency-design-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-currency-design-v0.0.1",
 "amount": {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "1000000000000000000000000000",
 "currency": "PEN"
 },
 "genesis_account": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "policy": {
 "_hint": "mitum-currency-currency-policy-v0.0.1",
 "new_account_min_balance": "10",
 "feeer": {
 "_hint": "mitum-currency-fixed-feeer-v0.0.1",
 "receiver": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "amount": "1"
 }
 },
 "aggregate": "1000000000000000000000000000"
 },
 "_links": {
 "currency:{currencyid}": {
 "templated": true,
 "href": "/currency/{currencyid:.*}"
 },
 "block": {
 "href": "/block/0"
 },500
 "operations": {
 "href": "/block/operation/7rSkwgF6BmLmid13jiBJKaaRtgYXS7rtDBFSuNdUNPeo"
 },
 "self": {
 "href": "/currency/PEN"
 }
 }
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

Document

/block/documents

	PATH

	METHOD

	/block/documents

	GET

/block/document/{document_id}

	PATH

	METHOD

	/block/document/{document_id}

	GET

/block/{height}/documents

	PATH

	METHOD

	/block/{height}/documents

	GET

/account/{address}/documents

	PATH

	METHOD

	/account/{address}/documents

	GET

Feefi

/feefi/{pool_id}/pool/{address}

	PATH

	METHOD

	/feefi/{pool_id}/pool/{address}

	GET

/feefi/{pool_id}/user/{address}

	PATH

	METHOD

	/feefi/{pool_id}/user/{address}

	GET

NFT

/account/{address}/nftagent/{collection_symbol}

	PATH

	METHOD

	/account/{address}/nftagent/{collection_symbol}

	GET

/account/{address}/nfts

	PATH

	METHOD

	/account/{address}/nfts

	GET

/nft/collection/{collection_symbol}

	PATH

	METHOD

	/nft/collection/{collection_symbol}

	GET

/nft/collection/{collection_symbol}/nfts

	PATH

	METHOD

	/nft/collection/{collection_symbol}/nfts

	GET

/nft/{nft_id}

	PATH

	METHOD

	/nft/{nft_id}

	GET

Builder

/builder/operation

	It returns all available operation types.

	PATH

	METHOD

	/builder/operation

	GET

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "",
 "_links": {
 "operation-fact:{create-accounts}": {
 "templated": true,
 "href": "/builder/operation/fact/template/create-accounts"
 },
 "operation-fact:{key-updater}": {
 "templated": true,
 "href": "/builder/operation/fact/template/key-updater"
 },
 "operation-fact:{transfers}": {
 "templated": true,
 "href": "/builder/operation/fact/template/transfers"
 },
 "operation-fact:{currency-register}": {
 "href": "/builder/operation/fact/template/currency-register",
 "templated": true
 },
 "self": {
 "href": "/builder/operation"
 }
 }
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/builder/operation/fact/template/{fact}

	It returns the fact template for the requested operation type.

	PATH

	METHOD

	/builder/operation/fact/template/{fact}

	GET

	Available types for {fact} can be found by /builder/operation.

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "8iBXCwN3q8ZvJJ49iAJEN5ZNAhYAYxV69jDLTB9NyzQW",
 "token": "cmFpc2VkIGJ5",
 "sender": "mothermca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "DBa8N5of7LZkx8ngH4mVbQmQ2NHDd6gL2mScGfhAEqdd",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "zzeo6WAS4uqwCss4eRibtLnYHqJM21zhzPbKWQVPttxWmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "-333",
 "currency": "xXx"
 }
]
 }
]
 },
 "_links": {
 "self": {
 "href": "/builder/operation/fact/template/create-accounts"
 }
 },
 "_extra": {
 "default": {
 "token": "cmFpc2VkIGJ5",
 "sender": "mothermca",
 "items.keys.keys.key": "zzeo6WAS4uqwCss4eRibtLnYHqJM21zhzPbKWQVPttxWmpu",
 "items.big": "-333",
 "currency": "xXx"
 }
 }
}

	404 (unknown operation)

If the {fact} you requested is wrong, it returns 404.

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "title": "unknown operation, \"...\"",
 "detail": "..."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/builder/operation/fact

	It returns the operation message with a fake fact_sign and an operation hash.

	It automatically fills hash of fact with a correct fact hash.

	Use a valid fact message as a request json.

	PATH

	METHOD

	/builder/operation/fact

	POST

Request Example

	A request json must be a fact message.

	It is available not to fill the hash field.

{
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "",
 "token": "MjAyMS0wOC0yN1QwNjo1MDowNi41OTZa",
 "sender": "ETox5FKJFknprZv7iJk5KnKmqR9kz7fWTEWkHCaDkad3mca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "yAbsevAtgHBT6BXoxJmL2nPveqd1B6kKp2dfAxnoVb1",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "key": "bvdEGTsfaG6W3esdY9PjgjrsariGkhU1i3krVWzPaHtYmpu",
 "weight": 100
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100",
 "currency": "MCC"
 }
]
 }
]
}

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "DJ5eA3wYsE4TZiBM9NrPNVWM8cCuceoZpCUNrSpMNQLa",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "2SehrkkFaqPDgjD6VyHtiAgBRS5Mc5BMFvK6auALP3Sa",
 "token": "MjAyMS0wOC0yN1QwNjo1MDowNi41OTZa",
 "sender": "ETox5FKJFknprZv7iJk5KnKmqR9kz7fWTEWkHCaDkad3mca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "9dGHYkHV61Nob2UivFHSTrZSYNyjzbZyqvwd2XbQ3w2T",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "bvdEGTsfaG6W3esdY9PjgjrsariGkhU1i3krVWzPaHtYmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "100",
 "currency": "MCC"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "zzeo6WAS4uqwCss4eRibtLnYHqJM21zhzPbKWQVPttxWmpu",
 "signature": "22UZo26eN",
 "signed_at": "2020-10-08T07:53:26Z"
 }
],
 "memo": ""
 },
 "_links": {
 "self": {
 "href": "/builder/operation/fact"
 }
 },
 "_extra": {
 "default": {
 "fact_signs.signer": "zzeo6WAS4uqwCss4eRibtLnYHqJM21zhzPbKWQVPttxWmpu",
 "fact_signs.signature": "22UZo26eN"
 },
 "signature_base": "FW3W9vEA0DQwh6QoRxrjCaSPene+l8l1x7v9LUb59tNtaXR1bQ=="
 }
}

	400 (problems in request)

If the fact message you requested is wrong or not available, it returns 400.

{
"_hint": "mitum-currency-problem-v0.0.1",
"type": "https://github.com/spikeekips/mitum-currency/problems/others",
"title": "...",
"detail": "..."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/builder/operation/sign

	It returns the operation message with a new operation hash.

	It automatically fills hash of the operation with the newly generated operation hash.

	So the request operation message is available even though it doesn’t have operation hash.

	PATH

	METHOD

	/builder/operation/sign

	POST

Request Example

	A request json must be an operation message.

	It is available not to fill the hash field. (But fact hash must be correct.)

{
 "memo": "",
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "8yGWvxxQUGUd2tL2EEJSJyDTguXgrDrwwFVAgqnefWp5",
 "token": "MjAyMi0wMi0wM1QwNjoyMTozMi41Njla",
 "sender": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GyCVt1JHwrjVmJo3Gjf1wpViDC1sCVjfCY8bEV5aHUrq",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "hTTVAEnZwaGzs12XLax2M7nY4MAnwykYLA6QpVVEbuuMmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "1000000000000000000000",
 "currency": "PEN"
 }
]
 }
]
 },
 "hash": "",
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "AN1rKvtB4BCAHibpYmUZsiPi2abRDJ91Y5qpYpuZuwS2MH1voVSjxCXHhfuTkqAMJCtgEzGtsFaGkjEt9SQucoCia2KDDqQhm",
 "signed_at": "2022-02-03T06:21:32.575Z"
 }
]
}

Response Example

	200

{
 "_hint": "mitum-currency-hal-v0.0.1",
 "hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "_embedded": {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "2UimExSvg5YYywaTqzY69TgAYGFEnKvtU5eHCiptZPLP",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "8yGWvxxQUGUd2tL2EEJSJyDTguXgrDrwwFVAgqnefWp5",
 "token": "MjAyMi0wMi0wM1QwNjoyMTozMi41Njla",
 "sender": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GyCVt1JHwrjVmJo3Gjf1wpViDC1sCVjfCY8bEV5aHUrq",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "hTTVAEnZwaGzs12XLax2M7nY4MAnwykYLA6QpVVEbuuMmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "1000000000000000000000",
 "currency": "PEN"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "AN1rKvtB4BCAHibpYmUZsiPi2abRDJ91Y5qpYpuZuwS2MH1voVSjxCXHhfuTkqAMJCtgEzGtsFaGkjEt9SQucoCia2KDDqQhm",
 "signed_at": "2022-02-03T06:21:32.575Z"
 }
],
 "memo": ""
 },
 "_links": {
 "self": {
 "href": "/builder/operation/sign"
 }
 }
}

	400 (problems in request)

If there is a problem with the request(for example, invalid operation message), it returns 400.

{
"_hint": "mitum-currency-problem-v0.0.1",
"type": "https://github.com/spikeekips/mitum-currency/problems/others",
"title": "...",
"detail": "..."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

/builder/send

	It broadcasts a seal or an operation to the network.

	If broadcast is successful, it returns 200 with the complete seal json.

	However, successful broadcasting doesn’t ensure the success of processing the operation.

	PATH

	METHOD

	/builder/send

	POST

Request Example

	This API allows to broadcast both operations and seals.

	If the request body is an operation, it makes a new seal containing the operation then broadcasts it.

	If the request body is a seal, it newly signs to the seal and broadcasts it.

	operation

{
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "2UimExSvg5YYywaTqzY69TgAYGFEnKvtU5eHCiptZPLP",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "8yGWvxxQUGUd2tL2EEJSJyDTguXgrDrwwFVAgqnefWp5",
 "token": "MjAyMi0wMi0wM1QwNjoyMTozMi41Njla",
 "sender": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-single-amount-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "GyCVt1JHwrjVmJo3Gjf1wpViDC1sCVjfCY8bEV5aHUrq",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "hTTVAEnZwaGzs12XLax2M7nY4MAnwykYLA6QpVVEbuuMmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "1000000000000000000000",
 "currency": "PEN"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "AN1rKvtB4BCAHibpYmUZsiPi2abRDJ91Y5qpYpuZuwS2MH1voVSjxCXHhfuTkqAMJCtgEzGtsFaGkjEt9SQucoCia2KDDqQhm",
 "signed_at": "2022-02-03T06:21:32.575Z"
 }
],
 "memo": ""
}

	seal

{
 "_hint": "seal-v0.0.1",
 "hash": "6DrH1RbJHBoKBRFUo33m8foBNti7gSjKg31pgs8L1Cdz",
 "body_hash": "CjjV3HTbTonfkGZWMeXq6rWgBcf8sgRj74i6YdTjNabn",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "AN1rKvszFHPHZVahb17DCx5dzby8c3UBBeV8R2kzPGMiX8e2dceW8n3LifAaPJAHrTs47hF2xiVeyGcqW99j4rwMR1oH4DNeZ",
 "signed_at": "2022-02-03T06:32:28.022166729Z",
 "operations": [
 {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "GiFDqiwh9j6eqar1yhGGKiT7m8nRaiCW2KqjiAtJQeuu",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "J2Kr6rXvZmj2ooTcmvDCba2y2QCZ8dJikSwGpkH5gJBv",
 "token": "MjAyMi0wMi0wM1QwNjozMjoyOC4wMjE4MDg2NzNa",
 "sender": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-multiple-amounts-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "9Myzqxx5mHxy8oZL1uhvBFQaqwk3Egejh5AaBKsARZka",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "fGZAe2skLHoQ4rhPxbPvjNSjfcPY9292NVyJWX5m4cGYmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "10000",
 "currency": "PEN"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "AN1rKvtYoYJafJUim5BB5sjid8bxNszGB8kuDgbpARnbeGTgUwp2VpVjXS8kbArUVw4axKNb92ZZ4RXmjZn2enHbEAkb6soGL",
 "signed_at": "2022-02-03T06:32:28.022141041Z"
 }
],
 "memo": ""
 }
]
}

Response Example

	200

{
 "_hint": "seal-v0.0.1",
 "hash": "8xNFCxZ6mwgVLXntD7oXapxDLfVXpPDdcjS8Xb4aFQ6m",
 "body_hash": "A1PWmw93mqYd1VXY2ALQFB6qEB7tKQv8AJp1bkAK75QL",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "AN1rKvsxoy63ZDBRqJpz9ps79HHvZMz8jd4yfeTE4v3YFQT5ajoqsZqUF5sTWmACV9R2naBbtXVXamgtw7pPmpSRbkck6NcdF",
 "signed_at": "2022-02-03T06:35:14.742926621Z",
 "operations": [
 {
 "_hint": "mitum-currency-create-accounts-operation-v0.0.1",
 "hash": "GiFDqiwh9j6eqar1yhGGKiT7m8nRaiCW2KqjiAtJQeuu",
 "fact": {
 "_hint": "mitum-currency-create-accounts-operation-fact-v0.0.1",
 "hash": "J2Kr6rXvZmj2ooTcmvDCba2y2QCZ8dJikSwGpkH5gJBv",
 "token": "MjAyMi0wMi0wM1QwNjozMjoyOC4wMjE4MDg2NzNa",
 "sender": "8iRVFAPiHKaeznfN3CmNjtFtjYSPMPKLuL6qkaJz8RLumca",
 "items": [
 {
 "_hint": "mitum-currency-create-accounts-multiple-amounts-v0.0.1",
 "keys": {
 "_hint": "mitum-currency-keys-v0.0.1",
 "hash": "9Myzqxx5mHxy8oZL1uhvBFQaqwk3Egejh5AaBKsARZka",
 "keys": [
 {
 "_hint": "mitum-currency-key-v0.0.1",
 "weight": 100,
 "key": "fGZAe2skLHoQ4rhPxbPvjNSjfcPY9292NVyJWX5m4cGYmpu"
 }
],
 "threshold": 100
 },
 "amounts": [
 {
 "_hint": "mitum-currency-amount-v0.0.1",
 "amount": "10000",
 "currency": "PEN"
 }
]
 }
]
 },
 "fact_signs": [
 {
 "_hint": "base-fact-sign-v0.0.1",
 "signer": "cnMJqt1Q7LXKqFAWprm6FBC7fRbWQeZhrymTavN11PKJmpu",
 "signature": "AN1rKvtYoYJafJUim5BB5sjid8bxNszGB8kuDgbpARnbeGTgUwp2VpVjXS8kbArUVw4axKNb92ZZ4RXmjZn2enHbEAkb6soGL",
 "signed_at": "2022-02-03T06:32:28.022141041Z"
 }
],
 "memo": ""
 }
]
}

	400 (problems in request)

If there is a problem with your request(for example, wrong operation or seal), it returns 400.

{
"_hint": "mitum-currency-problem-v0.0.1",
"type": "https://github.com/spikeekips/mitum-currency/problems/others",
"title": "...",
"detail": "..."
}

	500

{
 "_hint": "mitum-currency-problem-v0.0.1",
 "title": "....",
 "type": "https://github.com/spikeekips/mitum-currency/problems/others",
 "detail": "...."
}

Javascript

This is Mitum SDK written in Javascript.

For more information, please refer to README of mitum-js-util [https://github.com/ProtoconNet/mitum-js-util].

Get Started

Prerequisite and Requirements

To use mitum-js-util and build it, npm or yarn should be installed.

The development environment is as follows:

$ npm --version
v16.10.0

$ node --version
7.24.0

Installation

	Using npm,

$ npm install mitumc

	Using yarn,

$ yarn add mitumc

	Using Git,

$ git clone https://github.com/ProtoconNet/mitum-js-util.git

$ cd mitum-js-util

$ sudo npm install -g

$ cd YOUR_PACKAGE

$ npm link mitumc

Make Your First Operation

This tutorial explains how to create-account by mitum-js-util.

If you want to check how to create other operations, go to Support Operations.

Get Available Account

Before start, you must hold the account registered in the network.

Mitum handles only operations sent by accounts that already exist on the network normally.

An account consists of the following factors.

1. pairs of (public key, weight); aka `keys`
- public key has suffix `mpu`
- The range of each weight should be in 1 <= weight <= 100
- If an account have single public key, the account is called 'single-sig account', or it's called 'multi-sig account'

1. threshold
- The range of threshold should be in 1 <= threshold <= 100
- The sum of all weights of the account should be over or equal to threshold

If you haven’t made an account yet, ask other accounts to create your account first.

You can get keypairs for your account in js - Get Mitum Keypair` section.

Hand your (public key, weight) pairs and threshold to the account holder who helped create your new account.

For signing, you must remember private keys corresponding each public key of the account. Don’t let not allowed users to know your private key!

Of course, you must know your account address because you should use the address as sender.

You are able to create operations with unauthorized account(like fake keys and address) but those operations will be rejected after broadcasting.

Now, go to the next part to start creating your first operation!

Create Generator

Most of the elements and factors for an operation are created by Generator.

For Mitum Currency, use Generator.currency.

When declaring a Generator, network id should be provided.

network id is up to each network.

Let’s suppose that the network id of the network is mitum.

import { Generator } from 'mitumc'

const generator = new Generator('mitum')
const currencyGenerator = generator.currency

For details about Generator, go to Major Classes and refer to Generator.

In addition, you must have an available account on the network.

Now, you are ready to create operations.

Create Operation Item

Everything to do by an operation is contained in operation fact, not in operation.

Fact has the basic information such that sender, token, etc…

Actually, real constructions for the operation are contained in Item.

That means you must create items for the operation.

Let’s suppose that you want to create an account following conditions below.

1. The keys and threshold of the account will be,
 - keys(public key, weight): (kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu, 50), (pWoFhRP3C7ocebSRPxTPfeaJZpnyKpEkxQqi6fAD4SHompu, 50)
 - threshold: 100

2. The initial balance of the account will be,
 - balance(currency id, amount): (MCC, 10000), (PEN, 20000)

Since the number of keys contained in the account is 2, new account will be a multi-sig account.

If every factor of the new account has been decided, create an item!

const key1 = currencyGenerator.key("kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu", 50) // key(pub, weight)
const key2 = currencyGenerator.key("pWoFhRP3C7ocebSRPxTPfeaJZpnyKpEkxQqi6fAD4SHompu", 50) // key(pub, weight)

const keys = currencyGenerator.keys([key1, key2], 100) // createKeys([key1, key2], threshold)

const amount1 = currencyGenerator.amount("MCC", "10000") // amount(currencyId, amount)
const amount2 = currencyGenerator.amount("PEN", "20000") // amount(currencyId, amount)
const amounts = currencyGenerator.amounts([amount1, amount2]); // createAmounts([amount1, amount2])

const createAccountsItem = currencyGenerator.getCreateAccountsItem(keys, amounts); // createCreateAccountsItem(keys, amounts)

	First, create each key by Generator.currency.key(public key, weight).

	Second, combine all keys with account threshold by Generator.currency.keys(key list, threshold).

	Third, create each amount by Generator.currency.amount(currencyId, amount).

	Forth, combine all amounts by Generator.currency.amounts(amount list).

	Finally, create an item by Generator.currency.getCreateAccountsItem(keys, amounts)

Of course, you can customize the content of items by following constraints.

- `Keys` created by `keys` can contain up to 10 key pairs.
- `Amounts` created by `amounts` can contain up to 10 amount pairs.
- Moreover, a `fact` can contain multiple items. The number of items in a fact is up to 10, either.

Create Operation Fact

Fact must have not empty items, sender, token, and fact hash.

Don’t worry about token and fact hash because they will be filled automatically by SDK.

The information you must provide is about items and sender.

The way to create items has been introduced in the section above.

Just be careful that only the account under below conditions can be used as sender.

1. The account which has been created already.
2. The account which has sufficient balance of currencies in items.
3. The account that you(or owners of the account) know its private keys corresponding account public keys.

Then, create fact!

const senderAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca" // sender's account address; replace with your address
const createAccountsFact = currencyGenerator.getCreateAccountsFact(senderAddress, [createAccountsItem]) // getCreateAccountsFact(sender's address, item list)

If you want to create fact with multiple items, put them all in item list of Generator.currency.getCreateAccountsFact(sender's address, item list) as an array.

Create Operation

Finally, you are in the step to create operation!

Only thing you need to prepare is sender’s private key. It is used for signing fact.

The signature of a private key is included in fact_signs as a fact signature.

The sum of weights of all signers in fact_signs should exceed or be equal to the sender’s threshold.

Only the signatures of the sender account’s keys are available to fact_signs!

There is memo in operation but it is not necessary. You can enter something if you need, but be careful because that memo also affects the operation hash.

In this example, suppose that sender is a single-sig account which means only a single key exists in the sender’s account.

If sender is a multi-sig account, you may add multiple signatures to fact_signs.

What key must sign is decided by the account’s threshold and keys’ weights.

const senderPrivateKey = "KxD8T82nfwsUmQu3iMXENm93YTTatGFp1AYDPqTo5e6ycvY1xNXpmpr" // sender's private key; replace with your private key

const createAccounts = generator.getOperation(createAccountsFact, "") // getOperation(fact, memo)
createAccounts.addSign(senderPrivateKey); // addSign(private key) add fact signature to fact_signs

Use just Generator.getOperation(fact, memo) for create operations, not Generator.currency.getOperation(fact, memo).

Unfortunately, an operation can contain only one fact.

Create Seal

In fact, operation itself is enough to create an account.

However, sometimes you may need to wrap multiple operations with a seal.

As mentioned above, one seal can contain multiple operations.

The maximum number of operations in a seal is decided by the policy of nodes.

So check how many operations you can include in a seal before creating seals.

Anyway, it is simple to create a seal with mitum-js-util.

What you have to prepare is private key from Mitum key package without any conditions.

Any btc compressed wif with suffix mpr is okay.

const anyPrivateKey = "KyK7aMWCbMtCJcneyBZXGG6Dpy2jLRYfx3qp7kxXJjLFnppRYt7wmpr"

const operations = [createAccounts]
const seal = generator.getSeal(anyPrivateKey, operations)

Like getOperation, use Generator.getSeal(signer, operation list).

Put all operations to wrap in operation list.

Support Operations

This section will introduce code example for each operation.

The following is a list of operations supported by each Mitum model.

	Model

	Support Operations

	Currency

	create account, key updater, transfer

	Currency Extension

	create contract account, withdraw

	Document

	create document, update document, (sign document)

	Feefi

	pool register, pool policy updater, pool deposit, pool withdraw

	NFT

	collection register, collection policy updater, mint, transfer, burn, sign, approve, delegate

Currency

Create Account

The tutorial for create-account have been already explained but it’ll be re-introduced in one code-block.

To create a new account you have to prepare,

	The information of the new account: account keys as pairs of (public key, weight), threshold, initial balance as pairs of (currency id, amount).

	Sender’s account that has existed already - especially sender’s account address and private keys.

As mentioned before, what private keys must sign the fact is up to the threshold and composition of weights.

import { Generator } from 'mitumc'

const generator = new Generator('mitum')
const currencyGenerator = generator.currency

const key1 = currencyGenerator.key("kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu", 50)
const key2 = currencyGenerator.key("pWoFhRP3C7ocebSRPxTPfeaJZpnyKpEkxQqi6fAD4SHompu", 50)

const keys = currencyGenerator.keys([key1, key2], 100)

const amount1 = currencyGenerator.amount("MCC", "10000")
const amount2 = currencyGenerator.amount("PEN", "20000")
const amounts = currencyGenerator.amounts([amount1, amount2]);

const createAccountsItem = currencyGenerator.getCreateAccountsItem(keys, amounts);

const senderAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca"
const createAccountsFact = currencyGenerator.getCreateAccountsFact(senderAddress, [createAccountsItem])

const senderPrivateKey = "KxD8T82nfwsUmQu3iMXENm93YTTatGFp1AYDPqTo5e6ycvY1xNXpmpr"

const createAccounts = generator.getOperation(createAccountsFact, "")
createAccounts.addSign(senderPrivateKey);

The detailed explanation was omitted. Refer to the beginning part of Make Your First Operation.

Key Updater

This operation is to update keys of the account as its name implies.

For example,

- I have an single sig account with keys: (kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu, 100), threshold: 100
- But I want to replace keys of the account with keys: (22ndFZw57ax28ydC3ZxzLJMNX9oMSqAfgauyWhC17pxDpmpu, 50), (22wD5RWsRFAr8mHkYmmyUDzKf6VBNgjHcgc3YhKxCvrZDmpu, 50), threshold: 100
- Then you can use key-updater operation to reach the goal!

Can I change my account from single-sig to multi-sig? or from multi-sig to single-sig?

Fortunately, of course, you can!

To update keys of the account, you have to prepare,

	The account(target) information you want to change the keys - account address and private keys; what private keys need is up to threshold and key weights.

	New keys: pairs of (public key, weights) and threshold

	Sufficient balance in a currency id to pay a fee.

create-account and transfer need item to create an operation but key-updater don’t need any item for it.

Just create fact right now.

import { Generator } from 'mitumc'

const generator = new Generator('mitum')
const currencyGenerator = generator.currency

const targetAddress = "JDhSSB3CpRjwM8aF2XX23nTpauv9fLhxTjWsQRm9cJ7umca"
const targetPrivateKey = "KzejtzpPZFdLUXo2hHouamwLoYoPtoffKo5zwoJXsBakKzSvTdbzmpr"

const newPub1 = currencyGenerator.key("22ndFZw57ax28ydC3ZxzLJMNX9oMSqAfgauyWhC17pxDpmpu", 100)
const newPub2 = currencyGenerator.key("22wD5RWsRFAr8mHkYmmyUDzKf6VBNgjHcgc3YhKxCvrZDmpu", 100)
const newKeys = currencyGenerator.keys([newPub1, newPub2], 100)

const keyUpdaterFact = currencyGenerator.getKeyUpdaterFact(targetAddress, "MCC", newKeys) // getKeyUpdaterFact(target address, currency for fee, new keys)

const keyUpdater = generator.getOperation(keyUpdaterFact, "")
keyUpdater.addSign(targetPrivateKey) // only one signature since the account is single-sig

	After updating keys of the account, the keys used before become useless. You should sign operation with private keys of new keypairs of the account.

	So record new private keysthreshold somewhere else before sending a key-updater operation to the network.

Transfer

Finally, you can transfer your tokens to another account.

As other operations, you have to prepare,

	Sender’s account information - account address, and private keys

	Pairs of (currency id, amount) to transfer

Like create-account, you must create item before making fact.

Check whether you hold sufficient balance for each currency id to transfer before sending the operation.

Before start, suppose that you want to transfer,

	1000000 MCC token

	15000 PEN token

And the receiver is,

	CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca

Note that up to 10 (currency id, amount) pairs can be included in one item.

Moreover, up to 10 items can be included in one fact. However, the receiver for each item should be different.

import { Generator } from 'mitumc'

const generator = new Generator('mitum')
const currencyGenerator = generator.currency

const senderPrivateKey = "KzdeJMr8e2fbquuZwr9SEd9e1ZWGmZEj96NuAwHnz7jnfJ7FqHQBmpr"
const senderAddress = "2D5vAb2X3Rs6ZKPjVsK6UHcnGxGfUuXDR1ED1hcvUHqsmca"
const receiverAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca"

const amount1 = currencyGenerator.amount("MCC", "1000000")
const amount2 = currencyGenerator.amount("PEN", "15000")
const amounts = currencyGenerator.amounts([amount1, amount2])

const transfersItem = currencyGenerator.getTransfersItem(receiverAddress, amounts) // getTransfersItem(receiver address, amounts)
const transfersFact = currencyGenerator.getTransfersFact(senderAddress, [transfersItem]) // getTransfersFact(sender address, item list)

const transfers = generator.getOperation(transfersFact, "")
transfers.addSign(senderPrivateKey) // suppose sender is single-sig

Currency Extension

Create Contract Account

You can create a contract account by sending this operation.

The steps for creating a create-contract-account operation are the same as for create-account.

However, the difference between contract account and general account is that in the case of contract account, there are no public keys in the account information.

Therefore, the contract account cannot send or start an operation as an operation sender, and it cannot arbitrarily send tokens from the account to another account.

Only the owner of the contract account can withdraw tokens sent to it to his account through withdraw operation.

Below is an example for creating a create-contract-account operation, and the description of the example is omitted because it is very similar to the case of create-account.

import { Generator } from 'mitumc'

const networkId = 'mitum'
const generator = new Generator(networkId)
const currencyGenerator = generator.currency

const key1 = currencyGenerator.key("kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu", 50)
const key2 = currencyGenerator.key("pWoFhRP3C7ocebSRPxTPfeaJZpnyKpEkxQqi6fAD4SHompu", 50)

const keys = currencyGenerator.keys([key1, key2], 100)

const amount1 = currencyGenerator.amount("MCC", "10000")
const amount2 = currencyGenerator.amount("PEN", "20000")
const amounts = currencyGenerator.amounts([amount1, amount2]);

const createAccountsItem = currencyGenerator.extension.getCreateContractAccountsItem(keys, amounts);

const senderAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca"
const createAccountsFact = currencyGenerator.extension.getCreateContractAccountsFact(senderAddress, [createAccountsItem])

const senderPrivateKey = "KxD8T82nfwsUmQu3iMXENm93YTTatGFp1AYDPqTo5e6ycvY1xNXpmpr"

const createContractAccounts = generator.getOperation(createContractAccounts, "")
createContractAccounts.addSign(senderPrivateKey);

Withdraw

The token deposited in the contract account can be withdrawn by its owner through the withdraw operation.

import { Generator } from 'mitumc';

const generator = new Generator('mitum')
const currencyGenerator = generator.currency

const amount = currencyGenerator.amount("MCC", "100");
const amounts = currencyGenerator.amounts([amount]);

const targetAddress = "2D5vAb2X3Rs6ZKPjVsK6UHcnGxGfUuXDR1ED1hcvUHqsmca";
const withdrawsItem = currencyGenerator.extension.getWithdrawsItem(targetAddress, amounts);

const senderAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca";
const withdrawsFact = currencyGenerator.extension.getWithdrawsFact(senderAddress, [withdrawsItem])

const senderPrivateKey = "KxD8T82nfwsUmQu3iMXENm93YTTatGFp1AYDPqTo5e6ycvY1xNXpmpr";

const withdraws = generator.getOperation(withdrawsFact, "")
withdraws.addSign(senderPrivateKey)

How to create an operation for document, feefi, and NFT can be found in README [https://github.com/ProtoconNet/mitum-js-util#readme] in Github.

Sign

To allow an operation to be stored in blocks, whether signatures of the operation satisfy the condition should be checked.

What you have to care about is,

	Has every signature been signed by the private key of the account?

	Is the sum of every weight for each signer greater than or equal to the account threshold?

Of course, there are other conditions each operation must satisfy but we will focus on signature (especially about fact signature) in this section.

Let’s suppose there is a multi-sig account with 3 keys s.t each weight is 30 and threshold is 50.

That means,

	(pub1, 30)

	(pub2, 30)

	(pub3, 30)

	threshold: 50

When this account wants to send an operation, the operation should include at least two fact signatures of different signers.

	CASE1: fact signatures signed by pub1’s private key and pub2’s private key

	the sum of pub1’s weight and pub2’s weight: 60

	the sum of weights = 60 > threshold = 50

	So the operation with these two fact signatures is available

	CASE2: fact signatures signed by pub2’s private key and pub3’s private key

	the sum of pub2’s weight and pub3’s weight: 60

	the sum of weights = 60 > threshold = 50

	So the operation with these two fact signatures is available

	CASE3: fact signatures signed by pub1’s private key and pub3’s private key

	the sum of pub1’s weight and pub3’s weight: 60

	the sum of weights = 60 > threshold = 50

	So the operation with these two fact signatures is available

	CASE4: fact signatures signed by pub1’s private key, pub2’s private key, pub3’s private key

	the sum of pub1’s weight, pub2’s weight and pub3’s weight: 90

	the sum of weights = 90 > threshold = 50

	So the operation with these two fact signatures is available

Therefore, you must add multiple signatures to each operation to satisfy the condition. (use Operation.addSign(private key))

Like CASE4, it’s okay to sign with every private key as long as the sum of their weight >= threshold.

Add Fact Sign to Operation

Besides adding a fact signature when creating the operation, there is another way to add a new fact signature to the operation.

To add a new signature to the operation, you have to prepare,

	Private key to sign - it should be that of the sender of the operation.

	Operation as JS dictionary object, or external JSON file.

	Network ID

First, create Signer with network id like Generator.

import { Signer } from 'mitumc'

const networkId = "mitum"
const signKey = "L3CQHoKPJnK61LZhvvvfRouvAjVVabx2RQXHHhPHbBssgcewjgNimpr"
const signer = new Signer(networkId, signKey)

Then, sign now!

const operationJsonPath = "../createAccount.json" // it's an example; replace with your operation path
const operationObject = createAccount.dict() // createAccount is the operation created by Generator.createOperation

const signedFromPath = signer.signOperation(operationJsonPath)
const signedFromObject = signer.signOperation(operationObject)

signedFromPath and signedFromObject results in operation with the same fact signatures.

Note that the result operation is not Operation object of mitum-js-util. It’s just a dictionary object.

If you want to add multiple signature at once, you must create another different JSON file then re-sign it with other private keys using Signer.

Details

Get Mitum Keypair

We will introduce how to create Mitum keypairs!

Before start, we want to let you know something important; About type suffix.

Address, private key, and public key in Mitum have specific type suffixes. They are,

	Account Address: mca

	Private Key: mpr

	Public Key: mpu

For example, an single-sig account looks like,

	Account Address: 9XyYKpjad2MSPxR4wfQHvdWrZnk9f5s2zc9Rkdy2KT1gmca

	Private Key: L11mKUECzKouwvXwh3eyECsCnvQx5REureuujGBjRuYXbMswFkMxmpr

	Public Key: 28Hhy6jwkEHx75bNLmG66RQu1LWiZ1vodwRTURtBJhtPWmpu

There are three methods to create a keypair.

Just Create New Keypair

mitum-js-util will create a random keypair for you!

Use getNewKeypair().

import { getNewKeypair } from 'mitumc'

const kp = getNewKeypair() // returns Keypair

kp.getPrivateKey() // KzF4ia7G8in3hm7TzSr5k7cNtx46BdEFTzVdnh82vAopqxJG8rHompr
kp.getPublicKey() // 25jrVNpKr59bYxrWH8eTkbG1iQ8hjvSFKVpfCcDT8oFf8mpu

kp.getRawPrivateKey() // KzF4ia7G8in3hm7TzSr5k7cNtx46BdEFTzVdnh82vAopqxJG8rHo
kp.getRawPublicKey() // 25jrVNpKr59bYxrWH8eTkbG1iQ8hjvSFKVpfCcDT8oFf8mpu

Get Keypair From Your Private Key

If you already have your own private key, create keypair with it!

import { getKeypairFromPrivateKey } from 'mitumc'

const kp = getKeypairFromPrivateKey("Kz5b6UMxnRvgL91UvNMuRoTfUEAUw7htW2z4kV2PEZUCVPFmdbXimpr")

kp.getPrivateKey() // Kz5b6UMxnRvgL91UvNMuRoTfUEAUw7htW2z4kV2PEZUCVPFmdbXimpr
kp.getPublicKey() // 239uA6z7MxkZfwp5zYKZ6eBbRWk38AvxeyzfHGQM8o2H8mpu

kp.getRawPrivateKey() // Kz5b6UMxnRvgL91UvNMuRoTfUEAUw7htW2z4kV2PEZUCVPFmdbXi
kp.getRawPublicKey() //239uA6z7MxkZfwp5zYKZ6eBbRWk38AvxeyzfHGQM8o2H8

Get Keypair from your seed

You can get a keypair from your seed, too. Even if you don’t remember the private key of the keypair, the keypair can be recovered by its seed.

Note that string seed length >= 36.

import { getKeypairFromSeed } from 'mitumc'

const kp = getKeypairFromSeed("Thelengthofseedshouldbelongerthan36characters.Thisisaseedfortheexample.")

kp.getPrivateKey() // KynL1wNZjuXvZDboEugU4sWKZ6ck5GTMqtv6eod8Q7C4NaB4kfZPmpr
kp.getPublicKey() // fyLbH5cUwNTihaW2YkJkAzeoLvTNTzf98r8dtCkjXbuqmpu

kp.getRawPrivateKey() // KynL1wNZjuXvZDboEugU4sWKZ6ck5GTMqtv6eod8Q7C4NaB4kfZP
kp.getRawPublicKey() // fyLbH5cUwNTihaW2YkJkAzeoLvTNTzf98r8dtCkjXbuq

Get Account Address with Keys

You can calcualte address from threshold, and every (public key, weight) pair of the account.

However, it is not available to get an address if the keys or threshold of the account have changed.

This method is available only for the account that have not changed yet.

The account information for the example is,

	key1: (vmk1iprMrs8V1NkA9DsSL3XQNnUW9SmFL5RCVJC24oFYmpu, 40)

	key2: (29BQ8gcVfJd5hPZCKj335WSe4cyDe7TGrjam7fTrkYNunmpu, 30)

	key3: (uJKiGLBeXF3BdaDMzKSqJ4g7L5kAukJJtW3uuMaP1NLumpu, 30)

	threshold: 100

import { Generator } from 'mitumc'

const gn = new Generator('mitum').currency

const key1 = gn.key("vmk1iprMrs8V1NkA9DsSL3XQNnUW9SmFL5RCVJC24oFYmpu", 40)
const key2 = gn.key("29BQ8gcVfJd5hPZCKj335WSe4cyDe7TGrjam7fTrkYNunmpu", 30)
const key3 = gn.key("uJKiGLBeXF3BdaDMzKSqJ4g7L5kAukJJtW3uuMaP1NLumpu", 30)

const keys = gn.keys([key1, key2, key3], 100)

const address = keys.address // this is what you want to get!

Major Classes

Generator

Generator is the class that helps generate operations for Mitum Currency.

Before you use Generator, network id must be set.

	For Mitum Currency, use Generator.currency.

	For Mitum Currency Extension, use Generator.currency.extension.

	For Mitum Document, use Generator.document.

	For Mitum Feefi, use Generator.feefi.

	For Mitum NFT, use Generator.nft.

import { Generator } from 'mitumc'

const networkId = 'mitum'
const generator = new Generator(networkId)

const currencyGenerator = generator.currency
const extensionGenerator = generator.currency.extension
const documentGenerator = generator.document
const feefiGenerator = generator.feefi
const nftGenerator = generator.nft

All methods of Generator provides are,

/* For Mitum Currency */
Generator.currency.key(key, weight) // 1 <= $weight <= 100
Generator.currency.amount(currencyId, amount) // typeof $amount === "string"
Generator.currency.keys(keys, threshold) // 1 <= $threshold <= 100
Generator.currency.amounts(amounts)
Generator.currency.getCreateAccountsItem(keys, amounts)
Generator.currency.getTransfersItem(receiver, amounts)
Generator.currency.getCreateAccountsFact(sender, items)
Generator.currency.getKeyUpdaterFact(target, currencyId, keys)
Generator.currency.getTransfersFact(sender, items)

/* For Mitum Currency Extension */
Generator.currency.extension.getCreateContractAccountsItem(keys, amounts)
Generator.currency.extension.getWithdrawsItem(target, amounts)
Generator.currency.extension.getCreateContractAccountsFact(sender, items)
Generator.currency.extension.getWithdrawsFact(sender, items)

/* For Mitum Document */
Generator.document.getCreateDocumentsItem(document, currencyId)
Generator.document.getUpdateDocumentsItem(document, currencyId)
Generator.document.getCreateDocumentsFact(sender, items)
Generator.document.getUpdateDocumentsFact(sender, items)

/* For Blocksign*/
Generator.document.blocksign.user(address, signcode, signed)
Generator.document.blocksign.document(documentId, owner, fileHash, creator, title, size, signers)
Generator.document.blocksign.getSignDocumentsItem(documentId, owner, currencyId)
Generator.document.blocksign.getSignDocumentsFact(sender, items)

/* For Blockcity */
Generator.document.blockcity.candidate(address, nickname, manifest, count)
Generator.document.blockcity.userStatistics(hp, strength, agility, dexterity, charisma intelligence, vital)
Generator.document.blockcity.userDocument(documentId, owner, gold, bankGold, userStatistics)
Generator.document.blockcity.landDocument(documentId, owner, address, area, renter, account, rentDate, period)
Generator.document.blockcity.voteDocument(documentId, owner, round, endTime, candidates, bossName, account, office)
Generator.document.blockcity.historyDocument(documentId, owner, name, account, date, usage, application)

/* For Feefi */
Generator.feefi.getPoolRegisterFact(sender, target, initFee, incomeCid, outlayCid, currencyId)
Generator.feefi.getPoolPolicyUpdaterFact(sender, target, fee, incomeCid, outlayCid, currencyId)
Generator.feefi.getPoolDepositsFact(sender, pool, incomeCid, outlayCid, amount)
Generator.feefi.getPoolWithdrawFact(sender, pool, incomeCid, outlayCid, amounts)

/* For NFT */
Generator.nft.signer(account, share, signed)
Generator.nft.signers(total, signers)
Generator.nft.collectionRegisterForm(target, symbol, name, royalty, uri, whites)
Generator.nft.collectionPolicy(name, royalty, uri, whites)
Generator.nft.mintForm(hash, uri, creators, copyrighters)
Generator.nft.getMintItem(collection, form, currencyId)
Generator.nft.getTransferItem(receiver, nftId, currencyId)
Generator.nft.getBurnItem(nftId, currencyId)
Generator.nft.getApproveItem(approved, nftId, currencyId)
Generator.nft.getDelegateItem(collection, agent, mode, currencyId)
Generator.nft.getSignItem(qualification, nftId, cid)
Generator.nft.getCollectionRegisterFact(sender, form, currencyId)
Generator.nft.getCollectionPolicyUpdaterFact(sender, collection, policy, cid)
Generator.nft.getMintFact(sender, items)
Generator.nft.getTransferFact(sender, items)
Generator.nft.getBurnFact(sender, items)
Generator.nft.getApproveFact(sender, items)
Generator.nft.getDelegateFact(sender, items)
Generator.nft.getSignFact(sender, items)

/* Common */
Generator.getOperation(fact, memo)
Generator.getSeal(signKey, operations)

Signer

Signer is the class for adding new fact signature to already create operations.

Like Generator, network id must be set.

You have to prepare private key to sign, too.

Signer provides only one method, that is,

Signer.signOperation(operation)

To check the exact usage of Signer, go back to Make Your First Operation - Sign.

JSONParser

This class is constructed just for convenience.

If you would like to use other js packages to export Operation to file or to print it in JSON format, you don’t need to use JSONParser of mitum-js-util.

import { Generator, JSONParser } from 'mitumc'

const generator = new Generator('mitum')
const currencyGenerator = generator.currency

// ... omitted
// ... create operations
// ... refer to above `Make Your First Operation`
// ... suppose you have already made operations - createAccount, keyUpdater, transfer and a seal - seal

JSONParser.toJSONString(createAccount.dict()) // print operation createAccount in JSON
JSONParser.toJSONString(keyUpdater.dict()) // print operation keyUpdater in JSON
JSONParser.toJSONString(transfer.dict()) // print operation transfer in JSON
JSONParser.toJSONString(seal) // print seal seal in JSON

JSONParser.getFile(createAccount.dict(), 'createAccount.json'); // getFile(dict object, file path)
JSONParser.getFile(keyUpdater.dict(), 'keyUpdater.json');
JSONParser.getFile(transfer.dict(), 'transfer.json');
JSONParser.getFile(seal, 'seal.json');

Python

This is Mitum SDK written in Python.

For more information, please refer to README of mitum-py-util [https://github.com/ProtoconNet/mitum-py-util].

Get Started

Prerequisite and Requirements

The development environment is as follows:

$ python --version
Python 3.9.2

Installation

	Using Git,

$ git clone https://github.com/ProtoconNet/mitum-py-util.git

$ cd mitum-py-util

$ python setup.py install

If setup.py doesn’t work properly, please just install necessary packages with requirements.txt before running setup.py.

$ pip install -r requirements.txt

Make Your First Operation

This tutorial explains how to create-account by mitum-py-util.

If you want to check how to create other operations, go to Support Operations.

Get Available Account

Before start, you must hold the account registered in the network.

Mitum handles only operations sent by accounts that already exist on the network normally.

An account consists of the following factors.

1. pairs of (public key, weight); aka `keys`
- public key has suffix `mpu`
- The range of each weight should be in 1 <= weight <= 100
- If an account have single public key, the account is called 'single-sig account', or it's called 'multi-sig account'

1. threshold
- The range of threshold should be in 1 <= threshold <= 100
- The sum of all weights of the account should be over or equal to threshold

If you haven’t made an account yet, ask other accounts to create your account first.

You can get keypairs for your account in Get Mitum Keypair section.

Hand your (public key, weight) pairs and threshold to the account holder who helped create your new account.

For signing, you must remember private keys corresponding each public key of the account. Don’t let not allowed users to know your private key!

Of course, you must know your account address because you should use the address as sender.

You are able to create operations with unauthorized account(like fake keys and address) but those operations will be rejected after broadcasting.

Now, go to the next part to start creating your first operation!

Create Generator

Most of the elements and factors for an operation are created by Generator.

For Mitum Currency, use Generator.currency.

When declaring a Generator, network id should be provided.

network id is up to each network.

Let’s suppose that the network id of the network is mitum.

from mitumc import Generator

generator = Generator('mitum')
currencyGenerator = generator.currency

For details about Generator, go to Major Classes and refer to Generator.

In addition, you must have an available account on the network.

Now, you are ready to create operations.

Create Operation Item

Everything to do by an operation is contained in operation fact, not in operation.

Fact has the basic information such that sender, token, etc…

Actually, real constructions for the operation are contained in Item.

That means you must create items for the operation.

Let’s suppose that you want to create an account following conditions below.

1. The keys and threshold of the account will be,
 - keys(public key, weight): (kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu, 50), (pWoFhRP3C7ocebSRPxTPfeaJZpnyKpEkxQqi6fAD4SHompu, 50)
 - threshold: 100

2. The initial balance of the account will be,
 - balance(currency id, amount): (MCC, 10000), (PEN, 20000)

Since the number of keys contained in the account is 2, new account will be a multi-sig account.

If every factor of the new account has been decided, create an item!

key1 = currencyGenerator.key("kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu", 50) # key(public key, weight)
key2 = currencyGenerator.key("pWoFhRP3C7ocebSRPxTPfeaJZpnyKpEkxQqi6fAD4SHompu", 50)
keys = currencyGenerator.keys([key1, key2], 100) # keys(keyList, threshold)

amount1 = currencyGenerator.amount('MCC', 1000) # amount(currency, amount)
amount1 = currencyGenerator.amount('PEN', 20000)
amounts = currencyGenerator.amounts([amount]) # amounts(amountList)

createAccountsItem = currencyGenerator.getCreateAccountsItem(keys, amounts)

	First, create each key by Generator.currency.key(public key, weight).

	Second, combine all keys with account threshold by Generator.currency.keys(key list, threshold).

	Third, create each amount by Generator.currency.amount(currencyId, amount).

	Forth, combine all amounts by Generator.currency.amounts(amount list).

	Finally, create an item by Generator.currency.getCreateAccountsItem(keys, amounts)

Of course, you can customize the content of items by following constraints.

- `Keys` created by `keys` can contain up to 10 key pairs.
- `Amounts` created by `amounts` can contain up to 10 amount pairs.
- Moreover, a `fact` can contain multiple items. The number of items in a fact is up to 10, either.

Create Operation Fact

Fact must have not empty items, sender, token, and fact hash.

Don’t worry about token and fact hash because they will be filled automatically by SDK.

The information you must provide is about items and sender.

The way to create items has been introduced in the section above.

Just be careful that only the account under below conditions can be used as sender.

1. The account which has been created already.
2. The account which has sufficient balance of currencies in items.
3. The account that you(or owners of the account) know its private keys corresponding account public keys.

Then, create fact!

senderAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca" # sender's account address; replace with your address
createAccountsFact = currencyGenerator.getCreateAccountsFact(senderAddress, [createAccountsItem]) # createCreateAccountsFact(sender's address, item list)

If you want to create fact with multiple items, put them all in item list of Generator.currency.getCreateAccountsFact(sender's address, item list) as an array.

Create Operation

Finally, you are in the step to create operation!

Only thing you need to prepare is sender’s private key. It is used for signing fact.

The signature of a private key is included in fact_signs as a fact signature.

The sum of weights of all signers in fact_signs should exceed or be equal to the sender’s threshold.

Only the signatures of the sender account’s keys are available to fact_signs!

There is memo in operation but it is not necessary. You can enter something if you need, but be careful because that memo also affects the operation hash.

In this example, suppose that sender is a single-sig account which means only a single key exists in the sender’s account.

If sender is a multi-sig account, you may add multiple signatures to fact_signs.

What key must sign is decided by the account’s threshold and keys’ weights.

senderPrivateKey = "KxD8T82nfwsUmQu3iMXENm93YTTatGFp1AYDPqTo5e6ycvY1xNXpmpr" # sender's private key; replace with your private key

createAccounts = generator.getOperation(createAccountsFact, "") # getOperation(fact, memo)
createAccounts.addFactSign(senderPrivateKey); # addFactSign(private key) add fact signature to fact_signs

Use just Generator.createOperation(fact, memo) for create operations, not Generator.currency.createOperation(fact, memo).

Unfortunately, an operation can contain only one fact.

Create Seal

In fact, operation itself is enough to create an account.

However, sometimes you may need to wrap multiple operations with a seal.

As mentioned above, one seal can contain multiple operations.

The maximum number of operations in a seal is decided by the policy of nodes.

So check how many operations you can include in a seal before creating seals.

Anyway, it is simple to create a seal with mitum-py-util.

What you have to prepare is private key from Mitum key package without any conditions.

Any btc compressed wif with suffix mpr is okay.

signKey = "L1V19fBjhnxNyfuXLWw6Y5mjFSixzdsZP4obkXEERskGQNwSgdm1mpr"

operations = [createAccounts]
seal = generator.getSeal(signKey, operations)

Like getOperation, use Generator.getSeal(signer, operation list).

Put all operations to wrap in operation list.

Support Operations

This section will introduce code example for each operation.

The following is a list of operations supported by each Mitum model.

	Model

	Support Operations

	Currency

	create account, key updater, transfer

	Currency Extension

	create contract account, withdraw

	Document

	create document, update document, (sign document)

	Feefi

	pool register, pool policy updater, pool deposit, pool withdraw

	NFT

	collection register, collection policy updater, mint, transfer, burn, sign, approve, delegate

Currency

Create Account

The tutorial for create-account have been already explained but it’ll be re-introduced in one code-block.

To create a new account you have to prepare,

	The information of the new account: account keys as pairs of (public key, weight), threshold, initial balance as pairs of (currency id, amount).

	Sender’s account that has existed already - especially sender’s account address and private keys.

As mentioned before, what private keys must sign the fact is up to the threshold and composition of weights.

from mitumc import Generator

senderPrivateKey = "L1V19fBjhnxNyfuXLWw6Y5mjFSixzdsZP4obkXEERskGQNwSgdm1mpr"
senderAddress = "5fbQg8K856KfvzPiGhzmBMb6WaL5AsugUnfutgmWECPbmca"

generator = Generator('mitum')
gn = generator.currency

key = gn.key("2177RF13ZZXpdE1wf7wu5f9CHKaA2zSyLW5dk18ExyJ84mpu", 100)
keys = gn.keys([key], 100)

amount = gn.amount('MCC', 100)
amounts = gn.amounts([amount])

createAccountsItem = gn.getCreateAccountsItem(keys, amounts)
createAccountsFact = gn.getCreateAccountsFact(srcAddr, [createAccountsItem])

createAccounts = generator.getOperation(createAccountsFact, "")
createAccounts.addFactSign(srcPriv)

The detailed explanation was omitted. Refer to the beginning part of Make Your First Operation.

Key Updater

This operation is to update keys of the account as its name implies.

For example,

- I have an single sig account with keys: (kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu, 100), threshold: 100
- But I want to replace keys of the account with keys: (22ndFZw57ax28ydC3ZxzLJMNX9oMSqAfgauyWhC17pxDpmpu, 50), (22wD5RWsRFAr8mHkYmmyUDzKf6VBNgjHcgc3YhKxCvrZDmpu, 50), threshold: 100
- Then you can use key-updater operation to reach the goal!

Can I change my account from single-sig to multi-sig? or from multi-sig to single-sig?

Fortunately, of course, you can!

To update keys of the account, you have to prepare,

	The account(target) information you want to change the keys - account address and private keys; what private keys need is up to threshold and key weights.

	New keys: pairs of (public key, weights) and threshold

	Sufficient balance in a currency id to pay a fee.

create-account and transfer need item to create an operation but key-updater don’t need any item for it.

Just create fact right now.

from mitumc import Generator

targetPrivateKey = "KzejtzpPZFdLUXo2hHouamwLoYoPtoffKo5zwoJXsBakKzSvTdbzmpr"
targetAddress = "JDhSSB3CpRjwM8aF2XX23nTpauv9fLhxTjWsQRm9cJ7umca"

generator = Generator('mitum')
gn = generator.currency

key1 = gn.key("22ndFZw57ax28ydC3ZxzLJMNX9oMSqAfgauyWhC17pxDpmpu", 50)
key2 = gn.key("22wD5RWsRFAr8mHkYmmyUDzKf6VBNgjHcgc3YhKxCvrZDmpu", 50)
keys = gn.keys([key1, key2], 100)

keyUpdaterFact = gn.getKeyUpdaterFact(targetAddress, keys, "MCC") # getKeyUpdaterFact(target address, new keys, currency id for fee)

keyUpdater = generator.getOperation(keyUpdaterFact, "")
keyUpdater.addFactSign(targetPrivateKey)

	After updating keys of the account, the keys used before become useless. You should sign operation with private keys of new keypairs of the account.

	So record new private keysthreshold somewhere else before sending a key-updater operation to the network.

Transfer

Finally, you can transfer your tokens to another account.

As other operations, you have to prepare,

	Sender’s account information - account address, and private keys

	Pairs of (currency id, amount) to transfer

Like create-account, you must create item before making fact.

Check whether you hold sufficient balance for each currency id to transfer before sending the operation.

Before start, suppose that you want to transfer,

	1000000 MCC token

	15000 PEN token

And the receiver is,

	CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca

Note that up to 10 (currency id, amount) pairs can be included in one item.

Moreover, up to 10 items can be included in one fact. However, the receiver for each item should be different.

from mitumc import Generator

generator = Generator('mitum')
gn = generator.currency

senderPrivateKey = "KzdeJMr8e2fbquuZwr9SEd9e1ZWGmZEj96NuAwHnz7jnfJ7FqHQBmpr"
senderAddress = "2D5vAb2X3Rs6ZKPjVsK6UHcnGxGfUuXDR1ED1hcvUHqsmca"
receiverAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca"

amount = gn.amount('MCC', 1000000)
amount = gn.amount('PEN', 15000)
amounts = gn.amounts([amount1, amount2])

transfersItem = gn.getTransfersItem(receiverAddress, amounts) # getTransfersItem(receiver address, amounts)
transfersFact = gn.getTransfersFact(senderAddress, [transfersItem]) # getTransfersFact(sender addrewss, item list)

transfers = generator.getOperation(transfersFact, "")
transfers.addFactSign(senderPrivateKey)

Currency Extension

Create Contract Account

You can create a contract account by sending this operation.

The steps for creating a create-contract-account operation are the same as for create-account.

However, the difference between contract account and general account is that in the case of contract account, there are no public keys in the account information.

Therefore, the contract account cannot send or start an operation as an operation sender, and it cannot arbitrarily send tokens from the account to another account.

Only the owner of the contract account can withdraw tokens sent to it to his account through withdraw operation.

Below is an example for creating a create-contract-account operation, and the description of the example is omitted because it is very similar to the case of create-account.

from mitumc import Generator

senderPrivateKey = "L1V19fBjhnxNyfuXLWw6Y5mjFSixzdsZP4obkXEERskGQNwSgdm1mpr"
senderAddress = "5fbQg8K856KfvzPiGhzmBMb6WaL5AsugUnfutgmWECPbmca"

generator = Generator('mitum')
gn = generator.currency

key = gn.key("2177RF13ZZXpdE1wf7wu5f9CHKaA2zSyLW5dk18ExyJ84mpu", 100)
keys = gn.keys([key], 100)

amount = gn.amount('MCC', 100)
amounts = gn.amounts([amount])

createContractAccountsItem = gn.extension.getCreateContractAccountsItem(keys, amounts)
createContractAccountsFact = gn.extension.getCreateContractAccountsFact(srcAddr, [createContractAccountsItem])

createContractAccounts = generator.getOperation(createContractAccountsFact, "")
createContractAccounts.addFactSign(srcPriv)

Withdraw

The token deposited in the contract account can be withdrawn by its owner through the withdraw operation.

from mitumc import Generator

generator = Generator('mitum')
gn = generator.currency

senderPrivateKey = "KzdeJMr8e2fbquuZwr9SEd9e1ZWGmZEj96NuAwHnz7jnfJ7FqHQBmpr"
senderAddress = "2D5vAb2X3Rs6ZKPjVsK6UHcnGxGfUuXDR1ED1hcvUHqsmca"
targetAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca"

amount = gn.amount('MCC', 1000000)
amount = gn.amount('PEN', 15000)
amounts = gn.amounts([amount1, amount2])

withdrawsItem = gn.extension.getWithdrawsItem(targetAddress, amounts)
withdrawsFact = gn.extension.getWithdrawsFact(senderAddress, [withdrawsItem])

withdraws = generator.getOperation(withdrawsFact, "")
withdraws.addFactSign(senderPrivateKey)

How to create an operation for document, feefi, and NFT can be found in README [https://github.com/ProtoconNet/mitum-py-util#readme] in Github.

Sign

To allow an operation to be stored in blocks, whether signatures of the operation satisfy the condition should be checked.

What you have to care about is,

	Has every signature been signed by the private key of the account?

	Is the sum of every weight for each signer greater than or equal to the account threshold?

Of course, there are other conditions each operation must satisfy but we will focus on signature (especially about fact signature) in this section.

Let’s suppose there is a multi-sig account with 3 keys s.t each weight is 30 and threshold is 50.

That means,

	(pub1, 30)

	(pub2, 30)

	(pub3, 30)

	threshold: 50

When this account wants to send an operation, the operation should include at least two fact signatures of different signers.

	CASE1: fact signatures signed by pub1’s private key and pub2’s private key

	the sum of pub1’s weight and pub2’s weight: 60

	the sum of weights = 60 > threshold = 50

	So the operation with these two fact signatures is available

	CASE2: fact signatures signed by pub2’s private key and pub3’s private key

	the sum of pub2’s weight and pub3’s weight: 60

	the sum of weights = 60 > threshold = 50

	So the operation with these two fact signatures is available

	CASE3: fact signatures signed by pub1’s private key and pub3’s private key

	the sum of pub1’s weight and pub3’s weight: 60

	the sum of weights = 60 > threshold = 50

	So the operation with these two fact signatures is available

	CASE4: fact signatures signed by pub1’s private key, pub2’s private key, pub3’s private key

	the sum of pub1’s weight, pub2’s weight and pub3’s weight: 90

	the sum of weights = 90 > threshold = 50

	So the operation with these two fact signatures is available

Therefore, you must add multiple signatures to each operation to satisfy the condition. (use Operation.addFactSign(private key))

Like CASE4, it’s okay to sign with every private key as long as the sum of their weight >= threshold.

Add Fact Sign to Operation

Besides adding a fact signature when creating the operation, there is another way to add a new fact signature to the operation.

To add a new signature to the operation, you have to prepare,

	Private key to sign - it should be that of the sender of the operation.

	Operation as JS dictionary object, or external JSON file.

	Network ID

First, create Signer with network id like Generator.

from mitumc import Signer

networkId = 'mitum'
signKey = 'L1V19fBjhnxNyfuXLWw6Y5mjFSixzdsZP4obkXEERskGQNwSgdm1mpr'
signer = Signer(networkId, signKey)

Then, sign now!

signed = signer.signOperation('operation.json') # signOperation(filePath)

Note that the result operation is not Operation object of mitum-py-util. It’s just a dictionary object.

If you want to add multiple signature at once, you must create another different JSON file then re-sign it with other private keys using Signer.

Details

Get Mitum Keypair

We will introduce how to create Mitum keypairs!

Before start, we want to let you know something important; About type suffix.

Address, private key, and public key in Mitum have specific type suffixes. They are,

	Account Address: mca

	Private Key: mpr

	Public Key: mpu

For example, an single-sig account looks like,

	Account Address: 9XyYKpjad2MSPxR4wfQHvdWrZnk9f5s2zc9Rkdy2KT1gmca

	Private Key: L11mKUECzKouwvXwh3eyECsCnvQx5REureuujGBjRuYXbMswFkMxmpr

	Public Key: 28Hhy6jwkEHx75bNLmG66RQu1LWiZ1vodwRTURtBJhtPWmpu

There are three methods to create a keypair.

Just Create New Keypair

mitum-py-util will create a random keypair for you!

Use getNewKeypair().

from mitumc.key import getNewKeypair

get new Keypair
kp = getNewKeypair() # returns BTCKeyPair
kp.privateKey # KzafpyGojcN44yme25UMGvZvKWdMuFv1SwEhsZn8iF8szUz16jskmpr
kp.publicKey # 24TbbrNYVngpPEdq6Zc5rD1PQSTGQpqwabB9nVmmonXjqmpu

Get Keypair From Your Private Key

If you already have your own private key, create keypair with it!

from mitumc.key import getKeypairFromPrivateKey

get Keypair from your private key
pkp = getKeypairFromPrivateKey("L2ddEkdgYVBkhtdN8HVXLZk5eAcdqXxecd17FDTobVeFfZNPk2ZDmpr")

Get Keypair From Your Seed

You can get a keypair from your seed, too. Even if you don’t remember the private key of the keypair, the keypair can be recovered by its seed.

Note that string seed length >= 36.

from mitumc.key import getKeypairFromSeed

get Keypair from your seed
skp = getKeypairFromSeed("Thisisaseedforthisexample.len(seed)>=36.")

Get Account Address with Keys

You can calcualte address from threshold, and every (public key, weight) pair of the account.

However, it is not available to get an address if the keys or threshold of the account have changed.

This method is available only for the account that have not changed yet.

The account information for the example is,

	key1: (vmk1iprMrs8V1NkA9DsSL3XQNnUW9SmFL5RCVJC24oFYmpu, 40)

	key2: (29BQ8gcVfJd5hPZCKj335WSe4cyDe7TGrjam7fTrkYNunmpu, 30)

	key3: (uJKiGLBeXF3BdaDMzKSqJ4g7L5kAukJJtW3uuMaP1NLumpu, 30)

	threshold: 100

from mitumc import Generator

gn = Generator('mitum').currency

pub1 = "vmk1iprMrs8V1NkA9DsSL3XQNnUW9SmFL5RCVJC24oFYmpu"
pub2 = "29BQ8gcVfJd5hPZCKj335WSe4cyDe7TGrjam7fTrkYNunmpu"
pub3 = "uJKiGLBeXF3BdaDMzKSqJ4g7L5kAukJJtW3uuMaP1NLumpu"

key1 = gn.key(pub1, 40)
key2 = gn.key(pub2, 30)
key3 = gn.key(pub3, 30)

keys = gn.keys([key1, key2, key3], 100)
address = keys.address # your address

Major Classes

Generator

Generator is the class that helps generate operations for Mitum Currency.

Before you use Generator, network id must be set.

	For Mitum Currency, use Generator.currency.

	For Mitum Currency Extension, use Generator.currency.extension.

	For Mitum Document, use Generator.document.

	For Mitum Feefi, use Generator.feefi.

	For Mitum NFT, use Generator.nft.

from mitumc import Generator

generator = Generator('mitum')
currencyGenerator = generator.currency
extensionGenerator = generator.currency.extension
documentGenerator = generator.document
feefiGenerator = generator.feefi
nftGenerator = generator.nft

All methods of Generator provides are,

For Mitum Currency
Generator.currency.key(key, weight) # 1 <= $weight <= 100
Generator.currency.amount(currencyId, amount)
Generator.currency.keys(keys, threshold) # 1 <= $threshold <= 100
Generator.currency.amounts(amounts)
Generator.currency.getCreateAccountsItem(keys, amounts)
Generator.currency.getTransfersItem(receiver, amounts)
Generator.currency.getCreateAccountsFact(sender, items)
Generator.currency.getKeyUpdaterFact(target, currencyId, keys)
Generator.currency.getTransfersFact(sender, items)

For Mitum Currency Extension
Generator.currency.extension.getCreateContractAccountsItem(keys, amounts)
Generator.currency.extension.getWithdrawsItem(target, amounts)
Generator.currency.extension.getCreateContractAccountsFact(sender, items)
Generator.currency.extension.getWithdrawsFact(sender, items)

For Mitum Document
Generator.document.getCreateDocumentsItem(document, currencyId)
Generator.document.getUpdateDocumentsItem(document, currencyId)
Generator.document.getCreateDocumentsFact(sender, items)
Generator.document.getUpdateDocumentsFact(sender, items)

For Blocksign
Generator.document.blocksign.user(address, signcode, signed)
Generator.document.blocksign.document(documentId, owner, fileHash, creator, title, size, signers)
Generator.document.blocksign.getSignDocumentsItem(documentId, owner, currencyId)
Generator.document.blocksign.getSignDocumentsFact(sender, items)

For Blockcity
Generator.document.blockcity.candidate(address, nickname, manifest, count)
Generator.document.blockcity.userStatistics(hp, strength, agility, dexterity, charisma intelligence, vital)
Generator.document.blockcity.userDocument(documentId, owner, gold, bankGold, userStatistics)
Generator.document.blockcity.landDocument(documentId, owner, address, area, renter, account, rentDate, period)
Generator.document.blockcity.voteDocument(documentId, owner, round, endTime, candidates, bossName, account, office)
Generator.document.blockcity.historyDocument(documentId, owner, name, account, date, usage, application)

For Mitum Feefi
Generator.feefi.getPoolRegisterFact(sender, target, initFee, incomeCid, outgoCid, cid)
Generator.feefi.getPoolPolicyUpdaterFact(sender, target, fee, incomeCid, outgoCid, cid)
Generator.feefi.getPoolDepositsFact(sender, pool, incomeCid, outgoCid, amount)
Generator.feefi.getPoolWithdrawFact(sender, pool, incomeCid, outgoCid, amounts)

For Mitum NFT
Generator.nft.signer(account, share, signed)
Generator.nft.signers(total, _signers)
Generator.nft.collectionRegisterForm(target, symbol, name, royalty, uri, whites)
Generator.nft.collectionPolicy(name, royalty, uri, whites)
Generator.nft.mintForm(hash, uri, creators, copyrighters)
Generator.nft.getMintItem(collection, form, cid)
Generator.nft.getTransferItem(receiver, nid, cid)
Generator.nft.getBurnItem(nid, cid)
Generator.nft.getApproveItem(approved, nid, cid)
Generator.nft.getDelegateItem(collection, agent, mode, cid) # mode: ["allow" || "cancel"]
Generator.nft.getSignItem(qualification, nid, cid) # qualification: ["creator" || "copyrighter"]
Generator.nft.getCollectionRegisgerFact(sender, form, cid)
Generator.nft.getCollectioPolicyUpdaterFact(sender, collection, policy, cid)
Generator.nft.getMintFact(sender, items)
Generator.nft.getTransferFact(sender, items)
Generator.nft.getBurnFact(sender, items)
Generator.nft.getApproveFact(sender, items)
Generator.nft.getDelegateFact(sender, items)
Generator.nft.getSignFact(sender, items)

Common
Generator.getOperation(fact, memo)
Generator.getSeal(signKey, operations)

Signer

Signer is the class for adding new fact signature to already create operations.

Like Generator, network id must be set.

You have to prepare private key to sign, too.

Signer provides only one method, that is,

Signer.signOperation(operation)

To check the exact usage of Signer, go back to Make Your First Operation - Sign.

JSONParser

This class is constructed just for convenience.

If you would like to use other python packages to export Operation to file or to print it in JSON format, you don’t need to use JSONParser of mitum-py-util.

from mitumc import JSONParser

... omitted
... create operations
... refer to above `Make Your First Operation`
... suppose you have already made operations - createAccount, keyUpdater, transfer and a seal - seal

JSONParser.toString(createAccount.dict()) # print operation createAccount in JSON
JSONParser.toString(keyUpdater.dict()) # print operation keyUpdater in JSON
JSONParser.toString(transfer.dict()) # print operation transfer in JSON
JSONParser.toString(seal) # print seal seal in JSON

JSONParser.toFile(createAccount.dict(), 'createAccount.json') # toFile(dict object, file path)
JSONParser.toFile(keyUpdater.dict(), 'keyUpdater.json')
JSONParser.toFile(transfer.dict(), 'transfer.json')
JSONParser.toFile(seal, 'seal.json')

Java

This is Mitum SDK written in Java.

For more information, please refer to README of mitum-java-util [https://github.com/ProtoconNet/mitum-java-util].

Get Started

Prerequisite and Requirements

This package was developed in the following environments:

$ java -version
java 17.0.1 2021-10-19 LTS
Java(TM) SE Runtime Environment (build 17.0.1+12-LTS-39)
Java HotSpot(TM) 64-Bit Server VM (build 17.0.1+12-LTS-39, mixed mode, sharing)

$ javac -version
javac 17.0.1

Installation

Download jar file [https://github.com/ProtoconNet/mitum-java-util/tree/main/release] from the repository.

Now, the latest version is mitum-java-util-4.1.1-jdk17.jar.

Using Gradle,

implementation files('./lib/mitum-java-util-4.1.1-jdk17.jar')

Make Your First Operation

This tutorial explains how to create an account by mitum-java-util.

If you want to check how to create other operations, go to Support Operations.

Get Available Account

Before start, you must hold the account registered in the network.

Mitum handles only operations sent by accounts that already exist on the network normally.

An account consists of the following factors.

1. pairs of (public key, weight); aka `keys`
- public key has suffix `mpu`
- The range of each weight should be in 1 <= weight <= 100
- If an account have single public key, the account is called 'single-sig account', or it's called 'multi-sig account'

2. threshold
- The range of threshold should be in 1 <= threshold <= 100
- The sum of all weights of the account should be over or equal to threshold

If you haven’t made an account yet, ask other accounts to create your account first.

You can get keypairs for your account in Get Mitum Keypair section.

Hand your (public key, weight) pairs and threshold to the account holder who helped create your new account.

For signing, you must remember private keys corresponding each public key of the account. Don’t let not allowed users to know your private key!

Of course, you must know your account address because you should use the address as sender.

You are able to create operations with unauthorized account(like fake keys and address) but those operations will be rejected after broadcasting.

Now, go to the next part to start creating your first operation!

Create Generator

Most of the elements and factors for an operation are created by Generator.

For Mitum Currency, use Generator.currency.

When declaring a Generator, network id should be provided.

network id is up to each network.

Let’s suppose that the network id of the network is mitum.

/*
import org.mitumc.sdk.Generator
*/
String id = "mitum";
Generator generator = Generator.get(id);

For details about Generator, go to Major Classes and refer to Generator.

In addition, you must have an available account on the network.

Now, you are ready to create operations.

Create Operation Item

Everything to do by an operation is contained in operation fact, not in operation.

Fact has the basic information such that sender, token, etc…

Actually, real constructions for the operation are contained in Item.

That means you must create items for the operation.

Let’s suppose that you want to create an account following conditions below.

1. The keys and threshold of the account will be,
 - keys(public key, weight): (kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu, 50), (pWoFhRP3C7ocebSRPxTPfeaJZpnyKpEkxQqi6fAD4SHompu, 50)
 - threshold: 100

2. The initial balance of the account will be,
 - balance(currency id, amount): (MCC, 10000), (PEN, 20000)

Since the number of keys contained in the account is 2, new account will be a multi-sig account.

If every factor of the new account has been decided, create an item!

/*
import org.mitumc.sdk.key.*;
import org.mitumc.sdk.operation.Amount;
import org.mitumc.sdk.operation.currency.*;
*/
Key key1 = Key.get("kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu", 50);
Key key2 = Key.get("pWoFhRP3C7ocebSRPxTPfeaJZpnyKpEkxQqi6fAD4SHompu", 50);
Keys keys = Keys.get(new Key[]{ key1, key2 }, 100);

Amount amount1 = Amount.get("MCC", "10000");
Amount amount2 = Amount.get("PEN", "20000");

CreateAccountsItem item = generator.currency.getCreateAccountsItem(keys, new Amount[]{ amount1, amount2 }); // newCreateAccountsItem(keys, amount list)

	First, create each key by Key.get(public key, weight).

	Second, combine all keys with account threshold by Keys.get(key list, threshold).

	Third, create each amount by Amount.get(currencyId, amount).

	Finally, create an item by Generator.currency.getCreateAccountsItem(keys, amount list)

Of course, you can customize the content of items by following constraints.

- `Keys` created by `keys` can contain up to 10 key pairs.
- `Amount list` s.t each amount created by `amounts` can contain up to 10 in one item.
- Moreover, a `fact` can contain multiple items. The number of items in a fact is up to 10, either.

Create Operation Fact

Fact must have not empty items, sender, token, and fact hash.

Don’t worry about token and fact hash because they will be filled automatically by SDK.

The information you must provide is about items and sender.

The way to create items has been introduced in the section above.

Just be careful that only the account under below conditions can be used as sender.

1. The account which has been created already.
2. The account which has sufficient balance of currencies in items.
3. The account that you(or owners of the account) know its private keys corresponding account public keys.

Then, create fact!

/*
import org.mitumc.sdk.operation.currency.*;
*/
String senderAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca"; // sender's account address; replace with your address
CreateAccountsFact fact = generator.currency.getCreateAccountsFact(senderAddress, new CreateAccountsItem[]{ item }); // newCreateAccountsFact(sender address, item list)

If you want to create fact with multiple items, put them all in item list of Generator.currency.getCreateAccountsFact(sender's address, item list) as an array.

Create Operation

Finally, you are in the step to create operation!

Only thing you need to prepare is sender’s private key. It is used for signing fact.

The signature of a private key is included in fact_signs as a fact signature.

The sum of weights of all signers in fact_signs should exceed or be equal to the sender’s threshold.

Only the signatures of the sender account’s keys are available to fact_signs!

There is memo in operation but it is not necessary. You can enter something if you need, but be careful because that memo also affects the operation hash.

In this example, suppose that sender is a single-sig account which means only a single key exists in the sender’s account.

If sender is a multi-sig account, you may add multiple signatures to fact_signs.

What key must sign is decided by the account’s threshold and keys’ weights.

/*
import org.mitumc.sdk.operation.Operation;
*/
String senderPrivateKey = "KxD8T82nfwsUmQu3iMXENm93YTTatGFp1AYDPqTo5e6ycvY1xNXpmpr";

Operation operation = generator.getOperation(fact);
operation.sign(senderPrivateKey);

Use just Generator.getOperation(fact, memo) for create operations, not Generator.currency.newOperation(fact, memo).

Unfortunately, an operation can contain only one fact.

Create Seal

In fact, operation itself is enough to create an account.

However, sometimes you may need to wrap multiple operations with a seal.

As mentioned above, one seal can contain multiple operations.

The maximum number of operations in a seal is decided by the policy of nodes.

So check how many operations you can include in a seal before creating seals.

Anyway, it is simple to create a seal with mitum-java-util.

What you have to prepare is private key from Mitum key package without any conditions.

Any btc compressed wif with suffix mpr is okay.

String signKey = "KzafpyGojcN44yme25UMGvZvKWdMuFv1SwEhsZn8iF8szUz16jskmpr";
HashMap<String, Object> seal = gn.getSeal(signKey, new Operation[]{ operation }); // getSeal(sign key, operation list)

Like getOperation, use Generator.getSeal(signer, operation list).

Put all operations to wrap in operation list.

Support Operations

This section will introduce code example for each operation.

The following is a list of operations supported by each Mitum model.

	Model

	Support Operations

	Currency

	create account, key updater, transfer

	Currency Extension

	create contract account, withdraw

	Document

	create document, update document, (sign document)

	Feefi

	pool register, pool policy updater, pool deposit, pool withdraw

	NFT

	collection register, collection policy updater, mint, transfer, burn, sign, approve, delegate

Currency

Create Account

The tutorial for create-account have been already explained but it’ll be re-introduced in one code-block.

To create a new account you have to prepare,

	The information of the new account: account keys as pairs of (public key, weight), threshold, initial balance as pairs of (currency id, amount).

	Sender’s account that has existed already - especially sender’s account address and private keys.

As mentioned before, what private keys must sign the fact is up to the threshold and composition of weights.

/*
import org.mitumc.sdk.key.*;
import org.mitumc.sdk.Generator;
import org.mitumc.sdk.operation.*;
import org.mitumc.sdk.operation.currency.*;
*/

String senderPrivateKey = "KzafpyGojcN44yme25UMGvZvKWdMuFv1SwEhsZn8iF8szUz16jskmpr";
String senderAddress = "FcLfoPNCYjSMnxLPiQJQFGTV15ecHn3xY4J2HNCrqbCfmca";

Generator gn = Generator.get("mitum"); // network id: mitum

Key key = Key.get("knW2wVXH399P9Xg8aVjAGuMkk3uTBZwcSpcy4aR3UjiAmpu", 100);
Keys keys = Keys.get(new Key[]{ key }, 100); // becomes single-sig account

Amount amount = Amount.get("MCC", "1000");
CreateAccountsItem item = gn.currency.getCreateAccountsItem(keys, new Amount[]{ amount });

CreateAccountsFact fact = gn.currency.getCreateAccountsFact(senderAddress, new CreateAccountsItem[]{ item });

Operation createAccount = gn.getOperation(fact);
createAccount.sign(senderPrivateKey);

The detailed explanation was omitted. Refer to the beginning part of Make Your First Operation.

Key Updater

This operation is to update keys of the account as its name implies.

For example,

- I have an single sig account with keys: (kpYjRwq6gQrjvzeqQ91MNiCcR9Beb9sD67SuhQ6frPGwmpu, 100), threshold: 100
- But I want to replace keys of the account with keys: (22ndFZw57ax28ydC3ZxzLJMNX9oMSqAfgauyWhC17pxDpmpu, 50), (22wD5RWsRFAr8mHkYmmyUDzKf6VBNgjHcgc3YhKxCvrZDmpu, 50), threshold: 100
- Then you can use key-updater operation to reach the goal!

Can I change my account from single-sig to multi-sig? or from multi-sig to single-sig?

Fortunately, of course, you can!

To update keys of the account, you have to prepare,

	The account(target) information you want to change the keys - account address and private keys; what private keys need is up to threshold and key weights.

	New keys: pairs of (public key, weights) and threshold

	Sufficient balance in a currency id to pay a fee.

create-account and transfer need item to create an operation but key-updater don’t need any item for it.

Just create fact right now.

/*
import org.mitumc.sdk.key.*;
import org.mitumc.sdk.Generator;
import org.mitumc.sdk.operation.*;
import org.mitumc.sdk.operation.currency.*;
*/

Generator gn = Generator.get("mitum"); // network id: mitum

String targetPrivateKey = "KzejtzpPZFdLUXo2hHouamwLoYoPtoffKo5zwoJXsBakKzSvTdbzmpr";
String targetAddress = "JDhSSB3CpRjwM8aF2XX23nTpauv9fLhxTjWsQRm9cJ7umca";

Key key1 = Key.get("22ndFZw57ax28ydC3ZxzLJMNX9oMSqAfgauyWhC17pxDpmpu", 50);
Key key2 = Key.get("22wD5RWsRFAr8mHkYmmyUDzKf6VBNgjHcgc3YhKxCvrZDmpu", 50);
Keys newKeys = Keys.get(new Key[]{ key1, key2 }, 100);

KeyUpdaterFact fact = gn.currency.getKeyUpdaterFact(targetAddress, "MCC", newKeys);
Operation keyUpdater = gn.getOperation(fact);
keyUpdater.sign(targetPrivateKey);

	After updating keys of the account, the keys used before become useless. You should sign operation with private keys of new keypairs of the account.

	So record new private keysthreshold somewhere else before sending a key-updater operation to the network.

Transfer

Finally, you can transfer your tokens to another account.

As other operations, you have to prepare,

	Sender’s account information - account address, and private keys

	Pairs of (currency id, amount) to transfer

Like create-account, you must create item before making fact.

Check whether you hold sufficient balance for each currency id to transfer before sending the operation.

Before start, suppose that you want to transfer,

	1000000 MCC token

	15000 PEN token

And the receiver is,

	CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca

Note that up to 10 (currency id, amount) pairs can be included in one item.

Moreover, up to 10 items can be included in one fact. However, the receiver for each item should be different.

/*
import org.mitumc.sdk.Generator;
import org.mitumc.sdk.operation.*;
import org.mitumc.sdk.operation.currency.*;
*/
Generator gn = Generator.get("mitum"); // network id: mitum

String senderPrivateKey = "KzdeJMr8e2fbquuZwr9SEd9e1ZWGmZEj96NuAwHnz7jnfJ7FqHQBmpr";
String senderAddress = "2D5vAb2X3Rs6ZKPjVsK6UHcnGxGfUuXDR1ED1hcvUHqsmca";
String receiverAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca";

Amount amount1 = Amount.get("MCC", "100000")
Amount amount2 = Amount.get("PEN", "15000")

TransfersItem item = gn.currency.getTransfersItem(receiverAddress, new Amount[]{ amount1, amount2 }); // getTransfersItem(receiver address, amount list)
TransfersFact fact = gn.currency.getTransfersFact(senderAddress, new TransfersItem[]{ item }); // getTransfersFact(sender address, item list)

Operation transfer = gn.getOperation(fact);
transfer.sign(senderPrivateKey); // suppose sender is single-sig

Currency Extension

Create Contract Account

You can create a contract account by sending this operation.

The steps for creating a create-contract-account operation are the same as for create-account.

However, the difference between contract account and general account is that in the case of contract account, there are no public keys in the account information.

Therefore, the contract account cannot send or start an operation as an operation sender, and it cannot arbitrarily send tokens from the account to another account.

Only the owner of the contract account can withdraw tokens sent to it to his account through withdraw operation.

Below is an example for creating a create-contract-account operation, and the description of the example is omitted because it is very similar to the case of create-account.

/*
import org.mitumc.sdk.key.*;
import org.mitumc.sdk.Generator;
import org.mitumc.sdk.operation.*;
import org.mitumc.sdk.operation.currency.*;
import org.mitumc.sdk.operation.currency.extension.*;
*/

String senderPrivateKey = "KzafpyGojcN44yme25UMGvZvKWdMuFv1SwEhsZn8iF8szUz16jskmpr";
String senderAddress = "FcLfoPNCYjSMnxLPiQJQFGTV15ecHn3xY4J2HNCrqbCfmca";

Generator gn = Generator.get("mitum"); // network id: mitum

Key key = Key.get("knW2wVXH399P9Xg8aVjAGuMkk3uTBZwcSpcy4aR3UjiAmpu", 100);
Keys keys = Keys.get(new Key[]{ key }, 100); // becomes single-sig account

Amount amount = Amount.get("MCC", "1000");
CreateContractAccountsItem item = gn.currency.extension.getCreateContractAccountsItem(keys, new Amount[]{ amount });

CreateContractAccountsFact fact = gn.currency.extension.getCreateContractAccountsFact(senderAddress, new CreateContractAccountsItem[]{ item });

Operation createContractAccount = gn.getOperation(fact);
createContractAccount.sign(senderPrivateKey);

Withdraw

The token deposited in the contract account can be withdrawn by its owner through the withdraw operation.

/*
import org.mitumc.sdk.Generator;
import org.mitumc.sdk.operation.*;
import org.mitumc.sdk.operation.currency.*;
import org.mitumc.sdk.operation.currency.extension.*;
*/
Generator gn = Generator.get("mitum"); // network id: mitum

String senderPrivateKey = "KzdeJMr8e2fbquuZwr9SEd9e1ZWGmZEj96NuAwHnz7jnfJ7FqHQBmpr";
String senderAddress = "2D5vAb2X3Rs6ZKPjVsK6UHcnGxGfUuXDR1ED1hcvUHqsmca";
String targetAddress = "CY1pkxsqQK6XMbnK4ssDNbDR2K7mitSwdS27DwBjd3Gcmca";

Amount amount1 = Amount.get("MCC", "1000000");
Amount amount2 = Amount.get("PEN", "15000");

WithdrawsItem item = gn.currency.extension.getWithdrawsItem(targetAddress, new Amount[]{ amount1, amount2 }); // getTransfersItem(receiver address, amount list)
WithdrawsFact fact = gn.currency.extension.getWithdrawsFact(senderAddress, new WithdrawsItem[]{ item }); // getTransfersFact(sender address, item list)

Operation withdraws = gn.getOperation(fact);
withdraws.sign(senderPrivateKey);

How to create an operation for document, feefi, and NFT can be found in README [https://github.com/ProtoconNet/mitum-java-util#readme] in Github.

Sign

To allow an operation to be stored in blocks, whether signatures of the operation satisfy the condition should be checked.

What you have to care about is,

	Has every signature been signed by the private key of the account?

	Is the sum of every weight for each signer greater than or equal to the account threshold?

Of course, there are other conditions each operation must satisfy but we will focus on signature (especially about fact signature) in this section.

Let’s suppose there is a multi-sig account with 3 keys s.t each weight is 30 and threshold is 50.

That means,

	(pub1, 30)

	(pub2, 30)

	(pub3, 30)

	threshold: 50

When this account wants to send an operation, the operation should include at least two fact signatures of different signers.

	CASE1: fact signatures signed by pub1’s private key and pub2’s private key

	the sum of pub1’s weight and pub2’s weight: 60

	the sum of weights = 60 > threshold = 50

	So the operation with these two fact signatures is available

	CASE2: fact signatures signed by pub2’s private key and pub3’s private key

	the sum of pub2’s weight and pub3’s weight: 60

	the sum of weights = 60 > threshold = 50

	So the operation with these two fact signatures is available

	CASE3: fact signatures signed by pub1’s private key and pub3’s private key

	the sum of pub1’s weight and pub3’s weight: 60

	the sum of weights = 60 > threshold = 50

	So the operation with these two fact signatures is available

	CASE4: fact signatures signed by pub1’s private key, pub2’s private key, pub3’s private key

	the sum of pub1’s weight, pub2’s weight and pub3’s weight: 90

	the sum of weights = 90 > threshold = 50

	So the operation with these two fact signatures is available

Therefore, you must add multiple signatures to each operation to satisfy the condition. (use Operation.addSign(private key))

Like CASE4, it’s okay to sign with every private key as long as the sum of their weight >= threshold.

Add Fact Sign to Operation

Besides adding a fact signature when creating the operation, there is another way to add a new fact signature to the operation.

To add a new signature to the operation, you have to prepare,

	Private key to sign - it should be that of the sender of the operation.

	Operation as JsonObject, or external JSON file.

	Network ID

First, create Signer with network id like Generator.

/*
import org.mitumc.sdk.Signer;
import org.mitumc.sdk.JSONParser;
*/
String id = "mitum";
String key = "KzafpyGojcN44yme25UMGvZvKWdMuFv1SwEhsZn8iF8szUz16jskmpr";

Signer signer = Signer.get(id, key);

Then, sign now!

HashMap<String, Object> signed = signer.addSignToOperation("operation.json"); // or JsonObject from Operation JSON instead

Note that the result operation is not Operation object of mitum-java-util. It’s just a HashMap object.

If you want to add multiple signatures at once, you must create a separate JSON file then re-sign it with other private keys using Signer.

Details

Get Mitum Keypair

We will introduce how to create Mitum keypairs!

Before start, we want to let you know something important; About type suffix.

Address, private key, and public key in Mitum have specific type suffixes. They are,

	Account Address: mca

	Private Key: mpr

	Public Key: mpu

For example, an single-sig account looks like,

	Account Address: 9XyYKpjad2MSPxR4wfQHvdWrZnk9f5s2zc9Rkdy2KT1gmca

	Private Key: L11mKUECzKouwvXwh3eyECsCnvQx5REureuujGBjRuYXbMswFkMxmpr

	Public Key: 28Hhy6jwkEHx75bNLmG66RQu1LWiZ1vodwRTURtBJhtPWmpu

There are three methods to create a keypair.

Just Create New Keypair

mitum-java-util will create a random keypair for you!

Use Keypar.create().

/*
import org.mitumc.sdk.key.Keypair;
*/
Keypair kp = Keypair.random();

kp.getPrivateKey(); // returns private key of the keypair
kp.getPublicKey(); // returns public key of the keypair

Get Keypair From Your Private Key

If you already have your own private key, create keypair with it!

/*
import org.mitumc.sdk.key.Keypair;
*/
String key = "KzafpyGojcN44yme25UMGvZvKWdMuFv1SwEhsZn8iF8szUz16jskmpr";
Keypair pkp = Keypair.fromPrivateKey(key);

Get Keypair From Your Seed

You can get a keypair from your seed, too. Even if you don’t remember the private key of the keypair, the keypair can be recovered by its seed.

Note that string seed length >= 36.

/*
import org.mitumc.sdk.key.Keypair;
*/
String seed = "Thisisaseedfortheexample;Keypair.fromSeed()";
Keypair skp = Keypair.fromSeed(seed);

// or... -----------------------------//
// byte[] bseed = seed.getBytes();
// Keypair skp = Keypair.fromSeed(bseed);

Get Account Address with Keys

You can calculate address from threshold, and every (public key, weight) pair of the account.

However, it is not available to get an address if the keys or threshold of the account have changed.

This method is available only for the account that have not changed yet.

The account information for the example is,

	key1: (vmk1iprMrs8V1NkA9DsSL3XQNnUW9SmFL5RCVJC24oFYmpu, 40)

	key2: (29BQ8gcVfJd5hPZCKj335WSe4cyDe7TGrjam7fTrkYNunmpu, 30)

	key3: (uJKiGLBeXF3BdaDMzKSqJ4g7L5kAukJJtW3uuMaP1NLumpu, 30)

	threshold: 100

/*
import org.mitumc.key.Key
import org.mitumc.key.Keys
*/
Key key1 = Key.get("vmk1iprMrs8V1NkA9DsSL3XQNnUW9SmFL5RCVJC24oFYmpu", 40);
Key key2 = Key.get("29BQ8gcVfJd5hPZCKj335WSe4cyDe7TGrjam7fTrkYNunmpu", 30);
Key key3 = Key.get("uJKiGLBeXF3BdaDMzKSqJ4g7L5kAukJJtW3uuMaP1NLumpu", 30);

Keys keys = Keys.get(new Key[]{ key1, key2, key3 }, 100);

String address = keys.getAddress(); // This is the goal!

Major Classes

Generator

Generator is the class that helps generate operations for Mitum Currency.

Before you use Generator, network id must be set.

	For Mitum Currency, use Generator.currency.

	For Mitum Currency Extension, use Generator.currency.extension.

	For Mitum Document, use Generator.document.

	For Mitum Feefi, use Generator.feefi.

	For Mitum NFT, use Generator.nft.

/*
import org.mitumc.sdk.Generator;
*/
String id = "mitum";
Generator generator = Generator.get(id);

CurrencyGenerator cgn = generator.currency; // org.mitumc.sdk.operation.currency.CurrencyGenerator;
ExtensionGenerator egn = generator.currency.extension; // org.mitumc.sdk.operation.currency.extension.ExtensionGenerator;
DocumentGenerator dgn = generator.document; // org.mitumc.sdk.operation.document.DocumentGenerator;
FeefiGenerator fgn = generator.feefi; // org.mitumc.sdk.operation.feefi.FeefiGenerator;
NFTGenerator ngn = generator.nft; // org.mitumc.sdk.operation.nft.NFTGenerator;

All methods of Generator provides are,

/* For Mitum Currency */
CreateAccountsItem getCreateAccountsItem(Keys keys, Amount[] amounts);
TransfersItem getTransfersItem(String receiver, Amount[] amounts);
CreateAccountsFact getCreateAccountsFact(String sender, CreateAccountsItem[] items);
KeyUpdaterFact getKeyUpdaterFact(String target, String currency, Keys keys);
TransfersFact getTransfersFact(String sender, TransfersItem[] items);

/* For Mitum Currency Extension */
CreateContractAccountsItem getCreateContractAccountsItem(Keys keys, Amount[] amounts);
WithdrawsItem getWithdrawsItem(String target, Amount[] amounts);
CreateContractAccountsFact getCreateContractAccountsFact(String sender, CreateContractAccountsItem[] items);
WithdrawsFact getWithdrawsFact(String sender, WithdrawsItem[] items);

/* For Mitum Document */
Generator.document.getCreateDocumentsItem(Document document, String currencyId);
Generator.document.getUpdateDocumentsItem(Document document, String currencyId);
Generator.document.getCreateDocumentsFact(String sender, CreateDocumentsItem[] items);
Generator.document.getUpdateDocumentsFact(String sender, UpdateDocumentsItem[] items);

/* For Blocksign */
Generator.document.blocksign.user(String address, String signCode, boolean signed);
Generator.document.blocksign.document(String documentId, String owner, String fileHash, BlockSignUser creator, String title, String size, BlockSignUser[] signers);
Generator.document.blocksign.getSignDocumentsItem(String documentId, String owner, String currencyId);
Generator.document.blocksign.getSignDocumentsFact(String sender, SignDocumentsItem[] items);DocumentsFact(String sender, BlockCityItem<T>[] items);

/* For Blockcity */
Candidate candidate(String address, String nickname, String manifest, int count);
UserStatistics userStatistics(int hp, int strength, int agility, int dexterity, int charisma, int intelligence, int vital);
Document userDocument(String documentId, String owner, int gold, int bankGold, UserStatistics statistics);
Document landDocument(String documentId, String owner, String address, String area, String renter, String account, String rentDate, int period);
Document voteDocument(String documentId, String owner, int round, String endTime, Candidate[] candidates, String bossName, String account, String office);
Document historyDocument(String documentId, String owner, String name, String account, String date, String usage, String app);

/* For Mitum Feefi */
PoolRegisterFact getPoolRegisterFact(String sender, String target, Amount initialFee, String incomingCid, String outgoingCid, String currency);
PoolPolicyUpdaterFact getPoolPolicyUpdaterFact(String sender, String target, Amount fee, String poolId, String currency);
PoolDepositsFact getPoolDepositsFact(String sender, String pool, String poolId, Amount amount);
PoolWithdrawFact getPoolWithdrawFact(String sender, String pool, String poolId, Amount[] amounts);

/* For Mitum NFT */
NFTSigner signer(String account, int share, boolean signed);
NFTSigners signers(int total, NFTSigner[] signers);
CollectionRegisterForm collectionRegisterForm(String target, String symbol, String name, int royalty, String uri, String[] whites);
CollectionPolicy collectionPolicy(String name, int royalty, String uri, String[] whites);
MintForm mintForm(String hash, String uri, NFTSigners creators, NFTSigners copyrighters);

MintItem getMintItem(String collection, MintForm form, String currency);
NFTTransferItem getTransferItem(String receiver, NFTID nid, String currency);
BurnItem getBurnItem(NFTID nid, String currency);
NFTSignItem getSignItem(String qualification, NFTID nid, String currency);
ApproveItem getApproveItem(String approved, NFTID nid, String currency);
DelegateItem getDelegateItem(String collection, String agent, String mode, String currency);

CollectionRegisterFact getCollectionRegisterFact(String sender, CollectionRegisterForm form, String currency);
CollectionPolicyUpdaterFact getCollectionPolicyUpdaterFact(String sender, String collection, CollectionPolicy policy, String currency);
MintFact getMintFact(String sender, MintItem[] items);
NFTTransferFact getTransferFact(String sender, NFTTransferItem[] items);
BurnFact getBurnFact(String sender, BurnItem[] items);
NFTSignFact getSignFact(String sender, NFTSignItem[] items);
ApproveFact getApproveFact(String sender, ApproveItem[] items);
DelegateFact getDelegateFact(String sender, DelegateItem[] items);

/* Common */
Operation getOperation(OperationFact fact);
Operation getOperation(OperationFact fact, String memo);
HashMap<String, Object> getSeal(String signKey, Operation[] operations);
HashMap<String, Object> getSeal(String signKey, JsonObject[] operations);
HashMap<String, Object> randomKeys();
HashMap<String, Object> randomKeys(int numOfKeys);

Signer

Signer is the class for adding new fact signature to already create operations.

Like Generator, network id must be set.

You have to prepare private key to sign, too.

Signer provides only one method, that is,

HashMap<String, Object> addSignToOperation(JsonObject operation);
HashMap<String, Object> addSignToOperation(String operationPath);

To check the exact usage of Signer, go back to Make Your First Operation - Sign.

JSONParser

This class is constructed just for convenience.

If you would like to use other Java packages to export Operation to file or to print it in JSON format, you don’t need to use JSONParser of mitum-java-util.

JsonObject getObjectFromJsonFile(String fpName);
JsonObject getObjectFromHashMap(HashMap<String, Object> target);
void writeJsonFileFromJsonObject(JsonObject target, String fpName);
void writeJsonFileFromHashMap(HashMap target, String fpName);
HashMap<String, Object> mergeOperations(JsonObject[] operations);
HashMap<String, Object> mergeOperations(HashMap<String, Object>[] operations);

/*
import org.mitumc.sdk.JSONParser;
*/
// ... omitted
// ... create operations
// ... refer to above `Make Your First Operation`
// ... suppose you have already made operations - createAccount, keyUpdater, transfer and a seal - seal

JSONParser.writeJsonFileFromHashMap(createAccount.toDict(), 'createAccount.json'); // writeJsonFileFromHashMap(HashMap, filePath)
JSONParser.writeJsonFileFromHashMap(keyUpdater.toDict(), 'keyUpdater.json');
JSONParser.writeJsonFileFromHashMap(transfer.toDict(), 'transfer.json');
JSONParser.writeJsonFileFromHashMap(seal, 'seal.json');

About Time Stamp

Expression of Time Stamp

For blocks, seals, signatures and etc, mitum uses yyyy-MM-dd HH:mm:ss.* +0000 UTC expression and yyyy-MM-ddTHH:mm:ss.*Z as standard.

All other timezones are not allowed! You must use only +0000 timezone for mitum.

For example,

	When converting timestamp to byte format for generating block/seal/fact_sign hash

convert the string 2021-11-16 01:53:30.518 +0000 UTC to bytes format

	When putting timestamp in block, seal, fact_sign or etc

convert the timestamp to 2021-11-16T01:53:30.518Z and put it in json

To generate operation hash, mitum concatenates byte arrays of network id, fact hash and byte arrays of fact_signs.

And to generate the byte array of a fact_sign, mitum concatenates byte arrays of signer, signature digest and signed_at.

Be careful that the format of signed_at when converted to bytes is like yyyy-MM-dd HH:mm:ss.* +0000 UTC but it will be expressed as yyyy-MM-ddTHH:mm:ss.*Z when putted in json.

How many decimal places to be expressed?

There is one more thing to note.

First at all, you don’t have to care about decimal points of second(ss.*) in timestamp.

Moreover, you can write timestamp without . and any number under ..

However, you should not put any unnecessary zeros(0) in the float expression of second(ss.*) when converting timestamp to bytes format.

For example,

	2021-11-16T01:53:30.518Z is converted to 2021-11-16 01:53:30.518 +0000 UTC without any change of the time itself.

	2021-11-16T01:53:30.510Z must be converted to 2021-11-16 01:53:30.51 +0000 UTC when generating hash.

	2021-11-16T01:53:30.000Z must be converted to 2021-11-16T01:53:30 +0000 UTC when generating hash.

Any timestamp with some unnecessary zeros putted in json doesn’t affect to effectiveness of the block, seal, or operation.

Just pay attention when convert the format.

Index

 _static/file.png

_static/minus.png

_static/plus.png

_images/node_discovery_case2.jpeg
/ N\

(D—

_images/node_discovery_case3.jpeg
(—

_images/node_discovery_case0.jpeg
/ N\

(D—

_images/node_discovery_case1.jpeg

_images/node_discovery_case4.jpeg
D—

nav.xhtml

 Table of Contents

 		
 Protocon Network Document

 		
 Mitum Protocol

 		
 What is MITUM?

 		
 Mitum Technical SPEC

 		
 Seal and Operation

 		
 Operation

 		
 Fact and token

 		
 Seal

 		
 Send

 		
 Stored in Block

 		
 Block Data

 		
 Block data in Mitum Node

 		
 BlockDataMap

 		
 BlockDataMap for block data stored in external storage

 		
 How to update BlockDataMap for external Storage

 		
 Blockchain Application Model

 		
 Digest Service

 		
 Mitum-based models

 		
 Mitum Currency

 		
 What is Mitum Currency

 		
 Features of Mitum Currency

 		
 Support Operations

 		
 Mitum Currency Extension

 		
 What is Mitum Currency Extension

 		
 Features of Mitum Currency Extension

 		
 Support Operations

 		
 Mitum Document

 		
 What is Mitum Document

 		
 Features of Mitum Document

 		
 Document ID

 		
 Support Operations

 		
 Mitum Feefi

 		
 What is Mitum Feefi

 		
 Features of Mitum Feefi

 		
 Support Operations

 		
 Mitum NFT

 		
 What is Mitum NFT

 		
 Features of Mitum NFT

 		
 Support Operations

 		
 Quick Start

 		
 About Mitum Currency Node

 		
 Prerequisite

 		
 Database

 		
 Golang

 		
 Installation

 		
 Configuration

 		
 address

 		
 genesis-operations

 		
 network

 		
 rate-limit

 		
 network-id

 		
 keypair

 		
 storage

 		
 suffrage

 		
 nodes

 		
 sync-interval

 		
 nodes

 		
 digest

 		
 tutorial.yml

 		
 Run

 		
 Running the Standalone Node

 		
 node init

 		
 node run

 		
 Lookup Genesis Account

 		
 Lookup using Digest API

 		
 Build Multi Nodes Network

 		
 Order of Execution

 		
 Four Suffrage Nodes

 		
 Four Suffrage Nodes and One Sync Node

 		
 Node Discovery Scenario

 		
 Node Handover

 		
 What is Handover?

 		
 Handover Scenario

 		
 How to Run

 		
 What If a start-handover is sent to A after the Handover is over?

 		
 How can I check that the start-handover is finished?

 		
 Command Line Interface

 		
 Summary

 		
 Key Generation

 		
 key

 		
 new

 		
 address

 		
 sign

 		
 Node Management

 		
 node

 		
 init

 		
 run

 		
 start-handover

 		
 info

 		
 storage

 		
 download

 		
 verify-blockdata

 		
 verify-database

 		
 clean

 		
 clean-by-height

 		
 restore

 		
 set-blockdatamaps

 		
 Deploy

 		
 new

 		
 keys

 		
 key

 		
 revoke

 		
 version

 		
 quic-client

 		
 Operation Execution

 		
 seal

 		
 send

 		
 sign

 		
 sign-fact

 		
 Operation Generation

 		
 currency

 		
 create-account

 		
 transfer

 		
 key-updater

 		
 currency-register

 		
 currency-policy-updater

 		
 suffrage-inflation

 		
 currency-extension

 		
 create-contract-account

 		
 withdraw

 		
 document

 		
 create-document

 		
 update-document

 		
 sign-document

 		
 feefi

 		
 pool-register

 		
 pool-policy-updater

 		
 deposit-pool

 		
 withdraw-pool

 		
 nft

 		
 collection-register

 		
 collection-policy-updater

 		
 mint

 		
 sign-nfts

 		
 transfer-nfts

 		
 burn

 		
 delegate

 		
 approve

 		
 Lookup Account

 		
 Prerequisite

 		
 Genesis Account Lookup

 		
 Operation Lookup

 		
 REST API

 		
 Node

 		
 Block

 		
 Account

 		
 Currency

 		
 Feefi

 		
 NFT

 		
 Operation Builder

 		
 Using Operation Builder

 		
 Get Operation Fact Template

 		
 Build Operation Message

 		
 Sign Operation Message

 		
 Broadcast Message to Network

 		
 Confirming the Success of the Operation

 		
 API List

 		
 Node Info

 		
 /

 		
 Block

 		
 /block/manifests

 		
 /block/{height}

 		
 /block/{height}/manifest

 		
 /block/{height}/operations

 		
 /block/{block_hash}

 		
 /block/{block_hash}/manifest

 		
 /block/operations

 		
 /block/operation/{fact_hash}

 		
 Account

 		
 /account/{address}

 		
 /account/{address}/operations

 		
 /accounts?publickey={public_key}

 		
 Currency

 		
 /currency

 		
 /currency/{currency_id}

 		
 Document

 		
 /block/documents

 		
 /block/document/{document_id}

 		
 /block/{height}/documents

 		
 /account/{address}/documents

 		
 Feefi

 		
 /feefi/{pool_id}/pool/{address}

 		
 /feefi/{pool_id}/user/{address}

 		
 NFT

 		
 /account/{address}/nftagent/{collection_symbol}

 		
 /account/{address}/nfts

 		
 /nft/collection/{collection_symbol}

 		
 /nft/collection/{collection_symbol}/nfts

 		
 /nft/{nft_id}

 		
 Builder

 		
 /builder/operation

 		
 /builder/operation/fact/template/{fact}

 		
 /builder/operation/fact

 		
 /builder/operation/sign

 		
 /builder/send

 		
 Javascript

 		
 Get Started

 		
 Prerequisite and Requirements

 		
 Installation

 		
 Make Your First Operation

 		
 Get Available Account

 		
 Create Generator

 		
 Create Operation Item

 		
 Create Operation Fact

 		
 Create Operation

 		
 Create Seal

 		
 Support Operations

 		
 Currency

 		
 Currency Extension

 		
 Sign

 		
 Add Fact Sign to Operation

 		
 Details

 		
 Get Mitum Keypair

 		
 Get Account Address with Keys

 		
 Major Classes

 		
 Python

 		
 Get Started

 		
 Prerequisite and Requirements

 		
 Installation

 		
 Make Your First Operation

 		
 Get Available Account

 		
 Create Generator

 		
 Create Operation Item

 		
 Create Operation Fact

 		
 Create Operation

 		
 Create Seal

 		
 Support Operations

 		
 Currency

 		
 Currency Extension

 		
 Sign

 		
 Add Fact Sign to Operation

 		
 Details

 		
 Get Mitum Keypair

 		
 Get Account Address with Keys

 		
 Major Classes

 		
 Java

 		
 Get Started

 		
 Prerequisite and Requirements

 		
 Installation

 		
 Make Your First Operation

 		
 Get Available Account

 		
 Create Generator

 		
 Create Operation Item

 		
 Create Operation Fact

 		
 Create Operation

 		
 Create Seal

 		
 Support Operations

 		
 Currency

 		
 Currency Extension

 		
 Sign

 		
 Add Fact Sign to Operation

 		
 Details

 		
 Get Mitum Keypair

 		
 Get Account Address with Keys

 		
 Major Classes

 		
 About Time Stamp

 		
 Expression of Time Stamp

 		
 How many decimal places to be expressed?

_images/4_suffrage_nodes_1_sync_node.jpeg
Suffrage Nodes

—>

Sync Node
Non-suffrage Node

O—@"

_images/mitum_blockchain_layer.jpeg
Application Layer

Mitum Blockchain Framework

_images/4_suffrage_nodes.jpeg

